Density functional theory calculations of the gas-phase elimination kinetics of 2-(dimethylamino)ethyl chloride and ethyl chloride

Alexis Maldonado , José R. Mora , Tania Cordova , Gabriel Chuchani
{"title":"Density functional theory calculations of the gas-phase elimination kinetics of 2-(dimethylamino)ethyl chloride and ethyl chloride","authors":"Alexis Maldonado ,&nbsp;José R. Mora ,&nbsp;Tania Cordova ,&nbsp;Gabriel Chuchani","doi":"10.1016/j.theochem.2010.08.037","DOIUrl":null,"url":null,"abstract":"<div><p>The kinetic and mechanism of the unimolecular gas-phase elimination of 2-(dimethylamino)ethyl chloride were examined by using density functional theory methods to explain the enhanced reactivity in gas-phase elimination compared to the parent compound ethyl chloride. The plausible anchimeric assistance of the dimethylamino proposed in the literature was investigated. The theoretical calculations were carried out at B3LYP/6-31G(d,p), B3LYP/6-31++G(d,p), MPW1PW91/6-31G(d,p), MPW1PW91/6-31++G(d,p), PBEPBE/6-31G(d,p), and PBEPBE/6-31++G(d,p) levels of theory. The previous proposed reaction path of anchimeric assistance has an energy of activation 60<!--> <!-->kJ/mol higher than the experimental value. The located transition state in the minimum energy path is a four-centered cyclic configuration comprising chlorine, hydrogen and two carbon atoms. Calculation results give a lower energy of activation of 2-(dimethylamino)ethyl chloride when compared to the parent compound ethyl chloride. This result is due to the stabilization of the transition state because of electron delocalization involving the dimethylamino substituent.</p></div>","PeriodicalId":16419,"journal":{"name":"Journal of Molecular Structure-theochem","volume":"961 1","pages":"Pages 55-61"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.theochem.2010.08.037","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure-theochem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166128010005713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The kinetic and mechanism of the unimolecular gas-phase elimination of 2-(dimethylamino)ethyl chloride were examined by using density functional theory methods to explain the enhanced reactivity in gas-phase elimination compared to the parent compound ethyl chloride. The plausible anchimeric assistance of the dimethylamino proposed in the literature was investigated. The theoretical calculations were carried out at B3LYP/6-31G(d,p), B3LYP/6-31++G(d,p), MPW1PW91/6-31G(d,p), MPW1PW91/6-31++G(d,p), PBEPBE/6-31G(d,p), and PBEPBE/6-31++G(d,p) levels of theory. The previous proposed reaction path of anchimeric assistance has an energy of activation 60 kJ/mol higher than the experimental value. The located transition state in the minimum energy path is a four-centered cyclic configuration comprising chlorine, hydrogen and two carbon atoms. Calculation results give a lower energy of activation of 2-(dimethylamino)ethyl chloride when compared to the parent compound ethyl chloride. This result is due to the stabilization of the transition state because of electron delocalization involving the dimethylamino substituent.

2-(二甲胺)氯乙酯和氯乙酯气相消除动力学的密度泛函理论计算
采用密度泛函理论方法研究了2-(二甲氨基)氯乙酯气相消除反应的动力学和机理,以解释其气相消除反应活性较母体氯乙酯增强的原因。研究了文献中提出的二甲基胺的似是而非的对映辅助性。理论计算分别在B3LYP/6-31G(d,p)、B3LYP/6-31++G(d,p)、MPW1PW91/6-31G(d,p)、mpw1pw91 /6-31++G(d,p)、PBEPBE/6-31G(d,p)、PBEPBE/6-31G(d,p)理论水平下进行。先前提出的助嵌合反应路径的活化能比实验值高60 kJ/mol。位于最小能量路径上的过渡态是由氯、氢和两个碳原子组成的四中心环构型。计算结果表明,与母体化合物氯乙酯相比,2-(二甲胺)氯乙酯的活化能较低。这一结果是由于涉及二甲胺取代基的电子离域使过渡态稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信