Application of Reservoir Computing Based on a 2D Hyperchaotic Discrete Memristive Map in Efficient Temporal Signal Processing

Shengjie Xu, Jing Ren, Musha Ji’e, Shukai Duan, Lidan Wang
{"title":"Application of Reservoir Computing Based on a 2D Hyperchaotic Discrete Memristive Map in Efficient Temporal Signal Processing","authors":"Shengjie Xu, Jing Ren, Musha Ji’e, Shukai Duan, Lidan Wang","doi":"10.1142/s021812742330015x","DOIUrl":null,"url":null,"abstract":"The analysis of time series is essential in many fields, and reservoir computing (RC) can provide effective temporal processing that makes it well-suited for time series analysis and prediction tasks. In this study, we introduce a new discrete memristor model and a corresponding two-dimensional hyperchaotic map with complex dynamic properties that are well-suited for reservoir computing. By applying this map to the RC, we enhance the state richness of the reservoir, resulting in improved performance. The paper evaluates the performance of the proposed RC approach using time series data for sunspot, exchange rate, and solar-E forecasting tasks. Our experimental results demonstrate that this approach is highly effective in handling temporal data with both accuracy and efficiency. And comparing with other discrete memristive chaotic maps, the proposed map is the best for improving the RC performance. Furthermore, the proposed RC model is characterized by a simple structure that enables it to fully exploit the time-dependence of the state values of the hyperchaotic map.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021812742330015x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The analysis of time series is essential in many fields, and reservoir computing (RC) can provide effective temporal processing that makes it well-suited for time series analysis and prediction tasks. In this study, we introduce a new discrete memristor model and a corresponding two-dimensional hyperchaotic map with complex dynamic properties that are well-suited for reservoir computing. By applying this map to the RC, we enhance the state richness of the reservoir, resulting in improved performance. The paper evaluates the performance of the proposed RC approach using time series data for sunspot, exchange rate, and solar-E forecasting tasks. Our experimental results demonstrate that this approach is highly effective in handling temporal data with both accuracy and efficiency. And comparing with other discrete memristive chaotic maps, the proposed map is the best for improving the RC performance. Furthermore, the proposed RC model is characterized by a simple structure that enables it to fully exploit the time-dependence of the state values of the hyperchaotic map.
基于二维超混沌离散记忆映射的储层计算在有效时间信号处理中的应用
时间序列分析在许多领域都是必不可少的,而油藏计算(RC)可以提供有效的时间处理,使其非常适合于时间序列分析和预测任务。在这项研究中,我们引入了一种新的离散忆阻器模型和相应的具有复杂动态特性的二维超混沌映射,非常适合于油藏计算。通过将该图应用于RC,我们增强了储层的状态丰富度,从而提高了性能。本文利用时间序列数据评估了所提出的RC方法在太阳黑子、汇率和太阳e预测任务中的性能。实验结果表明,该方法在处理时间数据方面具有较高的精度和效率。与其他离散记忆混沌映射相比,该映射最能提高RC性能。此外,所提出的RC模型具有结构简单的特点,使其能够充分利用超混沌映射状态值的时间依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信