Lower bounds for the scalar curvatures of Ricci flow singularity models

IF 1.2 1区 数学 Q1 MATHEMATICS
Pak-Yeung Chan, B. Chow, Zilu Ma, Yongjia Zhang
{"title":"Lower bounds for the scalar curvatures of Ricci flow singularity models","authors":"Pak-Yeung Chan, B. Chow, Zilu Ma, Yongjia Zhang","doi":"10.1515/crelle-2022-0086","DOIUrl":null,"url":null,"abstract":"Abstract In a series of papers, Bamler [5, 4, 6] further developed the high-dimensional theory of Hamilton’s Ricci flow to include new monotonicity formulas, a completely general compactness theorem, and a long-sought partial regularity theory analogous to Cheeger–Colding theory. In this paper we give an application of his theory to lower bounds for the scalar curvatures of singularity models for Ricci flow. In the case of 4-dimensional non-Ricci-flat steady soliton singularity models, we obtain as a consequence a quadratic decay lower bound for the scalar curvature.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"10 1","pages":"253 - 265"},"PeriodicalIF":1.2000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0086","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In a series of papers, Bamler [5, 4, 6] further developed the high-dimensional theory of Hamilton’s Ricci flow to include new monotonicity formulas, a completely general compactness theorem, and a long-sought partial regularity theory analogous to Cheeger–Colding theory. In this paper we give an application of his theory to lower bounds for the scalar curvatures of singularity models for Ricci flow. In the case of 4-dimensional non-Ricci-flat steady soliton singularity models, we obtain as a consequence a quadratic decay lower bound for the scalar curvature.
里奇流奇点模型的标量曲率下界
Bamler[5,4,6]在一系列论文中进一步发展了Hamilton’s Ricci流的高维理论,包括新的单调性公式、完全一般紧性定理和一个长期寻求的类似Cheeger-Colding理论的部分正则性理论。本文给出了他的理论在Ricci流奇异模型标量曲率下界的一个应用。对于四维非里奇平面稳态孤子奇点模型,我们得到了标量曲率的二次衰减下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信