Convergence for an Immersed Finite Volume Method for Elliptic and Parabolic Interface Problems

Q3 Mathematics
C. Attanayake, Deepthika Senaratne
{"title":"Convergence for an Immersed Finite Volume Method for Elliptic and Parabolic Interface Problems","authors":"C. Attanayake, Deepthika Senaratne","doi":"10.5539/jmr.v15n2p19","DOIUrl":null,"url":null,"abstract":"In this article we analyze an immersed interface finite volume method for second order elliptic and   parabolic interface problems. We show the optimal convergence of the elliptic interface problem in L^2 and energy norms. \nFor the parabolic interface problem, we prove the optimal order in L^2 and energy norms for piecewise constant and variable diffusion coefficients respectively. Furthermore, for the elliptic interface problem, we demonstrate super convergence at element nodes when the diffusion coefficient  is a piecewise constant.  Numerical examples  are also provided to confirm the optimal error estimates.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n2p19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we analyze an immersed interface finite volume method for second order elliptic and   parabolic interface problems. We show the optimal convergence of the elliptic interface problem in L^2 and energy norms. For the parabolic interface problem, we prove the optimal order in L^2 and energy norms for piecewise constant and variable diffusion coefficients respectively. Furthermore, for the elliptic interface problem, we demonstrate super convergence at element nodes when the diffusion coefficient  is a piecewise constant.  Numerical examples  are also provided to confirm the optimal error estimates.
椭圆和抛物型界面问题的浸入有限体积法的收敛性
本文分析了二阶椭圆型和抛物型界面问题的浸入界面有限体积法。我们证明了椭圆界面问题在L^2和能量范数下的最优收敛性。对于抛物界面问题,我们分别证明了分段常扩散系数和分段变扩散系数的L^2最优阶和能量范数。此外,对于椭圆界面问题,当扩散系数为分段常数时,我们证明了在单元节点处的超收敛性。数值算例验证了最优误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信