Energy-Saving Predictive Video Streaming with Deep Reinforcement Learning

Dong Liu, Jianyu Zhao, Chenyang Yang
{"title":"Energy-Saving Predictive Video Streaming with Deep Reinforcement Learning","authors":"Dong Liu, Jianyu Zhao, Chenyang Yang","doi":"10.1109/GLOBECOM38437.2019.9013784","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a policy to optimize predictive power allocation for video streaming over mobile networks with deep reinforcement learning. The objective is to minimize the average energy consumption for video transmission under the quality of service constraint that avoids video stalling. To handle the continuous state and action spaces, we resort to deep deterministic policy gradient to solve the formulated problem. In contrast to previous predictive resource policies for video streaming, the proposed policy operates in an on- line and end-to-end manner. By judiciously designing action and state, the policy can exploit future information without explicit prediction. Simulation results show that the proposed policy can converge closely to the optimal policy with perfect prediction of future large-scale channel gains and outperforms the prediction-based optimal policy when prediction errors exist.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9013784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose a policy to optimize predictive power allocation for video streaming over mobile networks with deep reinforcement learning. The objective is to minimize the average energy consumption for video transmission under the quality of service constraint that avoids video stalling. To handle the continuous state and action spaces, we resort to deep deterministic policy gradient to solve the formulated problem. In contrast to previous predictive resource policies for video streaming, the proposed policy operates in an on- line and end-to-end manner. By judiciously designing action and state, the policy can exploit future information without explicit prediction. Simulation results show that the proposed policy can converge closely to the optimal policy with perfect prediction of future large-scale channel gains and outperforms the prediction-based optimal policy when prediction errors exist.
基于深度强化学习的节能预测视频流
在本文中,我们提出了一种策略来优化移动网络上视频流的预测功率分配。目标是在服务质量约束下最小化视频传输的平均能耗,避免视频延迟。为了处理连续的状态和动作空间,我们采用深度确定性策略梯度来解决表述问题。与先前的视频流预测资源策略相比,该策略以在线和端到端方式运行。通过明智地设计行动和状态,策略可以在没有明确预测的情况下利用未来的信息。仿真结果表明,该策略能够收敛于对未来大规模信道增益进行完美预测的最优策略,并且在存在预测误差的情况下优于基于预测的最优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信