Optimizing transaction data performance in database management systems

Nahrun Hartono, Zulkarnaim Masyhur
{"title":"Optimizing transaction data performance in database management systems","authors":"Nahrun Hartono, Zulkarnaim Masyhur","doi":"10.31940/matrix.v13i2.106-114","DOIUrl":null,"url":null,"abstract":"One indicator of the quality of an information system is the speed of data processing. A database's most common data processing operations are adding, displaying, changing, and deleting data. The amount of data stored in the database significantly impacts the performance of data processing and, therefore, the performance of information systems. The update command changes some or all of the data in a table. The update command works by retrieving the data in the table to be changed, entering the new data in a form, and then sending it back to the database. The update command is often combined with a condition specifying which data rows must be changed. This research is an experimental study that compares the use of the update command with a stored procedure to the use of the update command without a stored procedure. The results showed that the average processing time for the update command with the stored procedure was 348.896 milliseconds for the minimum data category, 266.462 milliseconds for the medium data category, and 279.543 milliseconds for the maximum data category. The average processing time for the update command without a stored procedure was 297.132 milliseconds for the minimum data category, 747.670 milliseconds for the medium data category, and 1256.273 milliseconds for the maximum data category. These results suggest that the update command with a stored procedure is more efficient than the one without a stored procedure. This is because the stored procedure can pre-compile the SQL statement, which reduces the time it takes to execute the statement.","PeriodicalId":31964,"journal":{"name":"Matrix Jurnal Manajemen Teknologi dan Informatika","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Jurnal Manajemen Teknologi dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31940/matrix.v13i2.106-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One indicator of the quality of an information system is the speed of data processing. A database's most common data processing operations are adding, displaying, changing, and deleting data. The amount of data stored in the database significantly impacts the performance of data processing and, therefore, the performance of information systems. The update command changes some or all of the data in a table. The update command works by retrieving the data in the table to be changed, entering the new data in a form, and then sending it back to the database. The update command is often combined with a condition specifying which data rows must be changed. This research is an experimental study that compares the use of the update command with a stored procedure to the use of the update command without a stored procedure. The results showed that the average processing time for the update command with the stored procedure was 348.896 milliseconds for the minimum data category, 266.462 milliseconds for the medium data category, and 279.543 milliseconds for the maximum data category. The average processing time for the update command without a stored procedure was 297.132 milliseconds for the minimum data category, 747.670 milliseconds for the medium data category, and 1256.273 milliseconds for the maximum data category. These results suggest that the update command with a stored procedure is more efficient than the one without a stored procedure. This is because the stored procedure can pre-compile the SQL statement, which reduces the time it takes to execute the statement.
优化数据库管理系统中的事务数据性能
信息系统质量的一个指标是数据处理的速度。数据库中最常见的数据处理操作是添加、显示、更改和删除数据。数据库中存储的数据量会显著影响数据处理的性能,从而影响信息系统的性能。update命令用于更改表中的部分或全部数据。update命令的工作原理是检索要更改的表中的数据,在表单中输入新数据,然后将其发送回数据库。update命令通常与指定必须更改哪些数据行的条件结合使用。本研究是一项实验性研究,比较了使用带有存储过程的update命令和不使用存储过程的update命令的情况。结果表明,使用存储过程执行update命令的平均处理时间对于最小数据类别为348.896毫秒,对于中等数据类别为266.462毫秒,对于最大数据类别为279.543毫秒。对于最小数据类别,不使用存储过程的update命令的平均处理时间为297.132毫秒,对于中等数据类别,平均处理时间为747.670毫秒,对于最大数据类别,平均处理时间为1256.273毫秒。这些结果表明,带存储过程的更新命令比不带存储过程的更新命令效率更高。这是因为存储过程可以预编译SQL语句,从而减少了执行语句所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信