Effect of cross-section geometry on the thermohydraulic characteristics of supercritical CO2 in minichannels

Lei Chai, Savvas A Tassou
{"title":"Effect of cross-section geometry on the thermohydraulic characteristics of supercritical CO2 in minichannels","authors":"Lei Chai,&nbsp;Savvas A Tassou","doi":"10.1016/j.egypro.2019.02.077","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dioxide (CO<sub>2</sub>) is becoming an important commercial and industrial working fluid as a potential replacement of the non-environmental friendly refrigerants. For refrigeration and power systems, the minichannel heat exchangers are becoming attractive for transcritical CO<sub>2</sub> Rankine cycle and supercritical CO<sub>2</sub> Brayton cycle, due to their highly compact construction, high heat transfer coefficient, high pressure capability and lower fluid inventory. This paper employs three-dimensional numerical models to investigate the heat transfer and pressure drop characteristics of supercritical CO<sub>2</sub> in minichannels. The models consider real gas thermophysical properties and buoyancy effect and investigate the effect of cross-section geometry on the thermohydraulic characteristics. Six minichannel cross-section geometries with the same hydraulic diameter of 1.22 mm are considered. The geometries include circle, semicircle, square, equilateral triangle, rectangle (aspect ratio = 2) and ellipse (aspect ratio = 2). The inlet temperature, outlet pressure and wall heat flux are 35 °C/75 bar/100 kW/m<sup>2</sup> and 35 °C/150 bar/300 kW/m<sup>2</sup> for heating conditions and 120 °C/75 bar/-100 kW/m<sup>2</sup> and 120 °C/150 bar/-300 kW/m<sup>2</sup> for cooling conditions. Comparisons of local Nusselt number and friction factor with those employed empirical correlations are made and useful information and guidelines are provided for the design of compact heat exchangers for supercritical CO<sub>2</sub> power system applications.</p></div>","PeriodicalId":11517,"journal":{"name":"Energy Procedia","volume":"161 ","pages":"Pages 446-453"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.egypro.2019.02.077","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876610219311567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Carbon dioxide (CO2) is becoming an important commercial and industrial working fluid as a potential replacement of the non-environmental friendly refrigerants. For refrigeration and power systems, the minichannel heat exchangers are becoming attractive for transcritical CO2 Rankine cycle and supercritical CO2 Brayton cycle, due to their highly compact construction, high heat transfer coefficient, high pressure capability and lower fluid inventory. This paper employs three-dimensional numerical models to investigate the heat transfer and pressure drop characteristics of supercritical CO2 in minichannels. The models consider real gas thermophysical properties and buoyancy effect and investigate the effect of cross-section geometry on the thermohydraulic characteristics. Six minichannel cross-section geometries with the same hydraulic diameter of 1.22 mm are considered. The geometries include circle, semicircle, square, equilateral triangle, rectangle (aspect ratio = 2) and ellipse (aspect ratio = 2). The inlet temperature, outlet pressure and wall heat flux are 35 °C/75 bar/100 kW/m2 and 35 °C/150 bar/300 kW/m2 for heating conditions and 120 °C/75 bar/-100 kW/m2 and 120 °C/150 bar/-300 kW/m2 for cooling conditions. Comparisons of local Nusselt number and friction factor with those employed empirical correlations are made and useful information and guidelines are provided for the design of compact heat exchangers for supercritical CO2 power system applications.

截面几何形状对微型通道中超临界CO2热水力特性的影响
二氧化碳(CO2)作为非环境友好型制冷剂的潜在替代品,正在成为重要的商业和工业工作流体。对于制冷和电力系统,由于其结构紧凑、传热系数高、高压能力强和流体库存低,小通道热交换器在跨临界CO2朗肯循环和超临界CO2布雷顿循环中变得越来越有吸引力。本文采用三维数值模型研究了超临界CO2在小通道内的传热和压降特性。该模型考虑了真实气体的热物性和浮力效应,并研究了截面几何形状对热水力特性的影响。考虑了相同水力直径为1.22 mm的6种小通道截面几何形状。几何形状包括圆形、半圆形、正方形、等边三角形、矩形(宽高比= 2)和椭圆形(宽高比= 2)。加热条件下的进口温度、出口压力和壁面热流分别为35℃/75 bar/100 kW/m2和35℃/150 bar/300 kW/m2,冷却条件下的进口温度、出口压力和壁面热流分别为120℃/75 bar/-100 kW/m2和120℃/150 bar/-300 kW/m2。将局部努塞尔数和摩擦因数与经验相关系数进行了比较,为超临界CO2动力系统中紧凑型换热器的设计提供了有用的信息和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信