Trajectory reconstruction from non-overlapping surveillance cameras with relative depth ordering constraints

B. Micusík
{"title":"Trajectory reconstruction from non-overlapping surveillance cameras with relative depth ordering constraints","authors":"B. Micusík","doi":"10.1109/ICCV.2011.6126334","DOIUrl":null,"url":null,"abstract":"We present a method for reconstructing a trajectory of an object moving in front of non-overlapping fully or partially calibrated cameras. The non-overlapping setup turns that problem ill-posed as no point correspondences can be established which are necessary for the well known point triangulation. The proposed solution instead builds on the assumption of trajectory smoothness and depth ordering prior information. We propose a novel formulation with a consistent minimization criterion and a way to utilize the depth ordering prior reflected by the size change of a bounding box associated to an image point being tracked. Reconstructing trajectory minimizing the trajectory smoothness, its re-projection error and employing the depth priors is casted as the Second Order Cone Program yielding a global optimum. The new formulation together with the proposed depth prior significantly improves the trajectory reconstruction in sense of accuracy and topology, and speeds up the solver. Synthetic and real experiments validate the feasibility of the proposed approach.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"151 1","pages":"922-928"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a method for reconstructing a trajectory of an object moving in front of non-overlapping fully or partially calibrated cameras. The non-overlapping setup turns that problem ill-posed as no point correspondences can be established which are necessary for the well known point triangulation. The proposed solution instead builds on the assumption of trajectory smoothness and depth ordering prior information. We propose a novel formulation with a consistent minimization criterion and a way to utilize the depth ordering prior reflected by the size change of a bounding box associated to an image point being tracked. Reconstructing trajectory minimizing the trajectory smoothness, its re-projection error and employing the depth priors is casted as the Second Order Cone Program yielding a global optimum. The new formulation together with the proposed depth prior significantly improves the trajectory reconstruction in sense of accuracy and topology, and speeds up the solver. Synthetic and real experiments validate the feasibility of the proposed approach.
基于相对深度排序约束的非重叠监控摄像机轨迹重建
我们提出了一种重建在非重叠的完全或部分校准相机前运动的物体轨迹的方法。不重叠的设置使得没有点对应的病态问题可以建立,而这是众所周知的点三角剖分所必需的。该方法基于轨迹平滑和深度排序先验信息的假设。我们提出了一种新的公式,具有一致的最小化标准和一种利用深度排序先验的方法,这种先验是由与被跟踪的图像点相关的边界框的大小变化所反映的。以最小的轨迹平滑度和重投影误差重构轨迹,利用深度先验将其转化为二阶锥规划,得到全局最优解。新公式与深度先验在精度和拓扑意义上显著提高了轨迹重建,加快了求解速度。综合实验和实际实验验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信