Stacking classifier to improve the classification of shoulder motion in transhumeral amputees

IF 1.3 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Amanpreet Kaur
{"title":"Stacking classifier to improve the classification of shoulder motion in transhumeral amputees","authors":"Amanpreet Kaur","doi":"10.1515/bmt-2020-0343","DOIUrl":null,"url":null,"abstract":"Abstract In recent years surface electromyography signals-based machine learning models are rapidly establishing. The efficacy of prosthetic arm growth for transhumeral amputees is aided by efficient classifiers. The paper aims to propose a stacking classifier-based classification system for sEMG shoulder movements. It presents the possibility of various shoulder motions classification of transhumeral amputees. To improve the system performance, adaptive threshold method and wavelet transformation have been applied for features extraction. Six different classifiers Support Vector Machines (SVM), Tree, Random Forest (RF), K-Nearest Neighbour (KNN), AdaBoost and Naïve Bayes (NB) are designed to extract the sEMG data classification accuracy. With cross-validation, the accuracy of RF, Tree and Ada Boost is 97%, 92% and 92% respectively. Stacking classifiers provides an accuracy as 99.4% after combining the best predicted multiple classifiers.","PeriodicalId":8900,"journal":{"name":"Biomedical Engineering / Biomedizinische Technik","volume":"12 1","pages":"105 - 117"},"PeriodicalIF":1.3000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering / Biomedizinische Technik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/bmt-2020-0343","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In recent years surface electromyography signals-based machine learning models are rapidly establishing. The efficacy of prosthetic arm growth for transhumeral amputees is aided by efficient classifiers. The paper aims to propose a stacking classifier-based classification system for sEMG shoulder movements. It presents the possibility of various shoulder motions classification of transhumeral amputees. To improve the system performance, adaptive threshold method and wavelet transformation have been applied for features extraction. Six different classifiers Support Vector Machines (SVM), Tree, Random Forest (RF), K-Nearest Neighbour (KNN), AdaBoost and Naïve Bayes (NB) are designed to extract the sEMG data classification accuracy. With cross-validation, the accuracy of RF, Tree and Ada Boost is 97%, 92% and 92% respectively. Stacking classifiers provides an accuracy as 99.4% after combining the best predicted multiple classifiers.
应用堆叠分类器改进经肱骨截肢者肩关节运动的分类
近年来,基于表面肌电信号的机器学习模型正在迅速建立。经肱骨截肢者义肢生长的有效性是由有效的分类器辅助的。本文旨在提出一种基于叠加分类器的表面肌电信号肩部运动分类系统。它提出了各种肩关节运动分类的可能性。为了提高系统性能,采用自适应阈值法和小波变换进行特征提取。设计了支持向量机(SVM)、树(Tree)、随机森林(RF)、k近邻(KNN)、AdaBoost和Naïve贝叶斯(NB)六种不同的分类器来提取表面肌电信号数据的分类精度。经交叉验证,RF、Tree和Ada Boost的准确率分别为97%、92%和92%。叠加分类器在组合了最佳预测的多个分类器后,准确率达到99.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.90%
发文量
58
审稿时长
2-3 weeks
期刊介绍: Biomedical Engineering / Biomedizinische Technik (BMT) is a high-quality forum for the exchange of knowledge in the fields of biomedical engineering, medical information technology and biotechnology/bioengineering. As an established journal with a tradition of more than 60 years, BMT addresses engineers, natural scientists, and clinicians working in research, industry, or clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信