Robust peer-to-peer learning via secure multi-party computation

Yongkang Luo , Wenjian Luo , Ruizhuo Zhang , Hongwei Zhang , Yuhui Shi
{"title":"Robust peer-to-peer learning via secure multi-party computation","authors":"Yongkang Luo ,&nbsp;Wenjian Luo ,&nbsp;Ruizhuo Zhang ,&nbsp;Hongwei Zhang ,&nbsp;Yuhui Shi","doi":"10.1016/j.jiixd.2023.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>To solve the data island problem, federated learning (FL) provides a solution paradigm where each client sends the model parameters but not the data to a server for model aggregation. Peer-to-peer (P2P) federated learning further improves the robustness of the system, in which there is no server and each client communicates directly with the other. For secure aggregation, secure multi-party computing (SMPC) protocols have been utilized in peer-to-peer manner. However, the ideal SMPC protocols could fail when some clients drop out. In this paper, we propose a robust peer-to-peer learning (RP2PL) algorithm via SMPC to resist clients dropping out. We improve the segment-based SMPC protocol by adding a check and designing the generation method of random segments. In RP2PL, each client aggregates their models by the improved robust secure multi-part computation protocol when finishes the local training. Experimental results demonstrate that the RP2PL paradigm can mitigate clients dropping out with no significant degradation in performance.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"1 4","pages":"Pages 341-351"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949715923000550/pdfft?md5=bc876c86904042971fa81e6e58d46700&pid=1-s2.0-S2949715923000550-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715923000550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the data island problem, federated learning (FL) provides a solution paradigm where each client sends the model parameters but not the data to a server for model aggregation. Peer-to-peer (P2P) federated learning further improves the robustness of the system, in which there is no server and each client communicates directly with the other. For secure aggregation, secure multi-party computing (SMPC) protocols have been utilized in peer-to-peer manner. However, the ideal SMPC protocols could fail when some clients drop out. In this paper, we propose a robust peer-to-peer learning (RP2PL) algorithm via SMPC to resist clients dropping out. We improve the segment-based SMPC protocol by adding a check and designing the generation method of random segments. In RP2PL, each client aggregates their models by the improved robust secure multi-part computation protocol when finishes the local training. Experimental results demonstrate that the RP2PL paradigm can mitigate clients dropping out with no significant degradation in performance.

通过安全多方计算实现健壮的点对点学习
为了解决数据孤岛问题,联邦学习(FL)提供了一种解决方案范例,其中每个客户端将模型参数(而不是数据)发送到服务器以进行模型聚合。点对点(P2P)联合学习进一步提高了系统的鲁棒性,其中没有服务器,每个客户端都直接与另一个客户端通信。为了实现安全聚合,安全多方计算(SMPC)协议被采用点对点的方式。然而,当一些客户端退出时,理想的SMPC协议可能会失败。在本文中,我们提出了一种基于SMPC的鲁棒点对点学习(RP2PL)算法来防止客户端退出。我们改进了基于段的SMPC协议,增加了一个校验,并设计了随机段的生成方法。在RP2PL中,每个客户端在完成本地训练后,通过改进的鲁棒安全多部分计算协议聚合各自的模型。实验结果表明,RP2PL模式可以在不显著降低性能的情况下减少客户端退出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信