{"title":"A Geometric Solution to Fair Representations","authors":"Yuzi He, K. Burghardt, Kristina Lerman","doi":"10.1145/3375627.3375864","DOIUrl":null,"url":null,"abstract":"To reduce human error and prejudice, many high-stakes decisions have been turned over to machine algorithms. However, recent research suggests that this does not remove discrimination, and can perpetuate harmful stereotypes. While algorithms have been developed to improve fairness, they typically face at least one of three shortcomings: they are not interpretable, their prediction quality deteriorates quickly compared to unbiased equivalents, and %the methodology cannot easily extend other algorithms they are not easily transferable across models% (e.g., methods to reduce bias in random forests cannot be extended to neural networks) . To address these shortcomings, we propose a geometric method that removes correlations between data and any number of protected variables. Further, we can control the strength of debiasing through an adjustable parameter to address the trade-off between prediction quality and fairness. The resulting features are interpretable and can be used with many popular models, such as linear regression, random forest, and multilayer perceptrons. The resulting predictions are found to be more accurate and fair compared to several state-of-the-art fair AI algorithms across a variety of benchmark datasets. Our work shows that debiasing data is a simple and effective solution toward improving fairness.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
To reduce human error and prejudice, many high-stakes decisions have been turned over to machine algorithms. However, recent research suggests that this does not remove discrimination, and can perpetuate harmful stereotypes. While algorithms have been developed to improve fairness, they typically face at least one of three shortcomings: they are not interpretable, their prediction quality deteriorates quickly compared to unbiased equivalents, and %the methodology cannot easily extend other algorithms they are not easily transferable across models% (e.g., methods to reduce bias in random forests cannot be extended to neural networks) . To address these shortcomings, we propose a geometric method that removes correlations between data and any number of protected variables. Further, we can control the strength of debiasing through an adjustable parameter to address the trade-off between prediction quality and fairness. The resulting features are interpretable and can be used with many popular models, such as linear regression, random forest, and multilayer perceptrons. The resulting predictions are found to be more accurate and fair compared to several state-of-the-art fair AI algorithms across a variety of benchmark datasets. Our work shows that debiasing data is a simple and effective solution toward improving fairness.