APPLICATION OF FUZZY METRIC ON MANIFOLDS

IF 0.5 Q3 MATHEMATICS
M. Hamidi, Mahdi Mollaei Arani
{"title":"APPLICATION OF FUZZY METRIC ON MANIFOLDS","authors":"M. Hamidi, Mahdi Mollaei Arani","doi":"10.22190/fumi200709032h","DOIUrl":null,"url":null,"abstract":"The relation between of fuzzy subsets and classical mathematics is fundamental to extend of new approchs in applied mathematics. This paper, applies the concept of fuzzy metric on construction of fuzzy Hausdorff space and fuzzy manifold space. Based on these concepts, we present a concept of fuzzy metric Hausdorff spaces and fuzzy metric manifold spaces. This study, extends the concept of fuzzy metric space to union and product of fuzzy metric spaces and in this regard investigates the some product of fuzzy metric fuzzy manifold spaces. Valued-level subsets play the main role in the connection of the notation of manifolds and fuzzy metrics.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"24 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi200709032h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The relation between of fuzzy subsets and classical mathematics is fundamental to extend of new approchs in applied mathematics. This paper, applies the concept of fuzzy metric on construction of fuzzy Hausdorff space and fuzzy manifold space. Based on these concepts, we present a concept of fuzzy metric Hausdorff spaces and fuzzy metric manifold spaces. This study, extends the concept of fuzzy metric space to union and product of fuzzy metric spaces and in this regard investigates the some product of fuzzy metric fuzzy manifold spaces. Valued-level subsets play the main role in the connection of the notation of manifolds and fuzzy metrics.
模糊度量在流形上的应用
模糊子集与经典数学的关系是应用数学新方法拓展的基础。本文将模糊度量的概念应用于模糊Hausdorff空间和模糊流形空间的构造。在此基础上,提出了模糊度量豪斯多夫空间和模糊度量流形空间的概念。本文将模糊度量空间的概念推广到模糊度量空间的并积,并在此基础上研究了模糊度量模糊流形空间的若干乘积。值级子集在流形符号与模糊度量之间的联系中起着重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信