Geometry-Informed Material Recognition

Joseph DeGol, M. G. Fard, Derek Hoiem
{"title":"Geometry-Informed Material Recognition","authors":"Joseph DeGol, M. G. Fard, Derek Hoiem","doi":"10.1109/CVPR.2016.172","DOIUrl":null,"url":null,"abstract":"Our goal is to recognize material categories using images and geometry information. In many applications, such as construction management, coarse geometry information is available. We investigate how 3D geometry (surface normals, camera intrinsic and extrinsic parameters) can be used with 2D features (texture and color) to improve material classification. We introduce a new dataset, GeoMat, which is the first to provide both image and geometry data in the form of: (i) training and testing patches that were extracted at different scales and perspectives from real world examples of each material category, and (ii) a large scale construction site scene that includes 160 images and over 800,000 hand labeled 3D points. Our results show that using 2D and 3D features both jointly and independently to model materials improves classification accuracy across multiple scales and viewing directions for both material patches and images of a large scale construction site scene.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"68 1","pages":"1554-1562"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Our goal is to recognize material categories using images and geometry information. In many applications, such as construction management, coarse geometry information is available. We investigate how 3D geometry (surface normals, camera intrinsic and extrinsic parameters) can be used with 2D features (texture and color) to improve material classification. We introduce a new dataset, GeoMat, which is the first to provide both image and geometry data in the form of: (i) training and testing patches that were extracted at different scales and perspectives from real world examples of each material category, and (ii) a large scale construction site scene that includes 160 images and over 800,000 hand labeled 3D points. Our results show that using 2D and 3D features both jointly and independently to model materials improves classification accuracy across multiple scales and viewing directions for both material patches and images of a large scale construction site scene.
几何信息材料识别
我们的目标是使用图像和几何信息来识别材料类别。在许多应用中,例如施工管理,可以使用粗糙的几何信息。我们研究了如何将3D几何(表面法线,相机内部和外部参数)与2D特征(纹理和颜色)一起使用,以改进材料分类。我们引入了一个新的数据集,GeoMat,它是第一个以以下形式提供图像和几何数据的数据集:(i)从每个材料类别的真实世界示例中以不同的尺度和视角提取的训练和测试补丁,以及(ii)一个大型建筑工地场景,包括160张图像和超过80万个手工标记的3D点。我们的研究结果表明,结合或单独使用二维和三维特征来建模材料,可以提高大规模建筑工地场景中材料斑块和图像在多个尺度和观看方向上的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信