{"title":"Flow Characterization of Bluff Bodies: A Two-Dimensional Transformation From Square to Triangular Cylinder","authors":"R. Borah, Siddhant Jain, Dyuman V. Joshi, U. Saha","doi":"10.1115/1.4051310","DOIUrl":null,"url":null,"abstract":"\n In the present study, two-dimensional unsteady, incompressible flow around a square body that is being transformed into a vertex oriented towards the flow configuration of a triangular body is numerically investigated at Re =100 using ANSYS FLUENT 19.0 software. The purpose is to explore the effect of this transformation on the wake characteristics of a square body with l/d = 1 to a triangular body with l/d = 0; where l is the length of lateral and front surface, and d is the body height. The effect on the flow behavior caused by the leading-edge transformation from the prospect of wake width, recirculation length and stagnation pressure difference is discussed. It is seen that as the l/d ratio decreases, the vortex strength increases which is attributed to the higher stagnation pressure difference value resulting in more intense rolling of the shedding vortex and a smaller wake width. For lower l/d, the fluid traverses a longer distance along the lateral surfaces resulting in greater loss of momentum and hence the lower vortex formation length. The mean drag coefficient is found to be minimum for l/d = 0.75 with stagnation pressure difference and recirculation length being the more dominating factor on this variation. The flow in all the cases separates at the rear surface and the general trend of decrease in drag coefficient with decrease in wake width is not followed. However, such modification leads to better aerodynamic outcome by weakening the periodic drag and lift forces.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"36 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4051310","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
In the present study, two-dimensional unsteady, incompressible flow around a square body that is being transformed into a vertex oriented towards the flow configuration of a triangular body is numerically investigated at Re =100 using ANSYS FLUENT 19.0 software. The purpose is to explore the effect of this transformation on the wake characteristics of a square body with l/d = 1 to a triangular body with l/d = 0; where l is the length of lateral and front surface, and d is the body height. The effect on the flow behavior caused by the leading-edge transformation from the prospect of wake width, recirculation length and stagnation pressure difference is discussed. It is seen that as the l/d ratio decreases, the vortex strength increases which is attributed to the higher stagnation pressure difference value resulting in more intense rolling of the shedding vortex and a smaller wake width. For lower l/d, the fluid traverses a longer distance along the lateral surfaces resulting in greater loss of momentum and hence the lower vortex formation length. The mean drag coefficient is found to be minimum for l/d = 0.75 with stagnation pressure difference and recirculation length being the more dominating factor on this variation. The flow in all the cases separates at the rear surface and the general trend of decrease in drag coefficient with decrease in wake width is not followed. However, such modification leads to better aerodynamic outcome by weakening the periodic drag and lift forces.
期刊介绍:
Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes