An FPGA implementation of a Restricted Boltzmann Machine classifier using stochastic bit streams

Bingzhe Li, M. Najafi, D. Lilja
{"title":"An FPGA implementation of a Restricted Boltzmann Machine classifier using stochastic bit streams","authors":"Bingzhe Li, M. Najafi, D. Lilja","doi":"10.1109/ASAP.2015.7245709","DOIUrl":null,"url":null,"abstract":"Artificial neural networks (ANNs) usually require a very large number of computation nodes and can be implemented either in software or directly in hardware, such as FPGAs. Software-based approaches are offline and not suitable for real-time applications, but they support a large number of nodes. FPGA-based implementations, in contrast, can greatly speedup the computation time. However, resource limitations in an FPGA restrict the maximum number of computation nodes in hardware-based approaches. This work exploits stochastic bit streams to implement the Restricted Boltzmann Machine (RBM) handwritten digit recognition application completely on an FPGA. Exploiting this approach saves a large number of hardware resources making the FPGA-based implementation of large ANNs feasible.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"21 1","pages":"68-69"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2015.7245709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Artificial neural networks (ANNs) usually require a very large number of computation nodes and can be implemented either in software or directly in hardware, such as FPGAs. Software-based approaches are offline and not suitable for real-time applications, but they support a large number of nodes. FPGA-based implementations, in contrast, can greatly speedup the computation time. However, resource limitations in an FPGA restrict the maximum number of computation nodes in hardware-based approaches. This work exploits stochastic bit streams to implement the Restricted Boltzmann Machine (RBM) handwritten digit recognition application completely on an FPGA. Exploiting this approach saves a large number of hardware resources making the FPGA-based implementation of large ANNs feasible.
使用随机比特流的受限玻尔兹曼机分类器的FPGA实现
人工神经网络通常需要大量的计算节点,可以在软件中实现,也可以直接在硬件(如fpga)中实现。基于软件的方法是离线的,不适合实时应用程序,但它们支持大量节点。相反,基于fpga的实现可以大大加快计算时间。然而,FPGA中的资源限制限制了基于硬件的方法中计算节点的最大数量。本文利用随机比特流在FPGA上完全实现了受限玻尔兹曼机(RBM)手写数字识别应用。利用这种方法节省了大量的硬件资源,使得基于fpga的大型人工神经网络的实现成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信