Daoyuan Chen, Min Yang, Haitao Zheng, Yaliang Li, Ying Shen
{"title":"Answer-enhanced Path-aware Relation Detection over Knowledge Base","authors":"Daoyuan Chen, Min Yang, Haitao Zheng, Yaliang Li, Ying Shen","doi":"10.1145/3331184.3331328","DOIUrl":null,"url":null,"abstract":"Knowledge Based Question Answering (KBQA) is one of the most promising approaches to provide suitable answers for the queries posted by users. Relation detection that aims to take full advantage of the substantial knowledge contained in knowledge base (KB) becomes increasingly important. Significant progress has been made in performing relation detection over KB. However, recent deep neural networks that achieve the state of the art on KB-based relation detection task only consider the context information of question sentences rather than the relatedness between question and answer candidates, and exclusively extract the relation from KB triple rather than learn informative relational path. In this paper, we propose a Knowledge-driven Relation Detection network (KRD) to interactively learn answer-enhanced question representations and path-aware relation representations for relation detection. A Siamese LSTM is employed into a similarity matching process between the question representation and relation representation. Experimental results on the SimpleQuestions and WebQSP datasets demonstrate that KRD outperforms the state-of-the-art methods. In addition, a series of ablation test show the robust superiority of the proposed method.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Knowledge Based Question Answering (KBQA) is one of the most promising approaches to provide suitable answers for the queries posted by users. Relation detection that aims to take full advantage of the substantial knowledge contained in knowledge base (KB) becomes increasingly important. Significant progress has been made in performing relation detection over KB. However, recent deep neural networks that achieve the state of the art on KB-based relation detection task only consider the context information of question sentences rather than the relatedness between question and answer candidates, and exclusively extract the relation from KB triple rather than learn informative relational path. In this paper, we propose a Knowledge-driven Relation Detection network (KRD) to interactively learn answer-enhanced question representations and path-aware relation representations for relation detection. A Siamese LSTM is employed into a similarity matching process between the question representation and relation representation. Experimental results on the SimpleQuestions and WebQSP datasets demonstrate that KRD outperforms the state-of-the-art methods. In addition, a series of ablation test show the robust superiority of the proposed method.