L. Georgiadis, K. Giannis, G. Italiano, E. Kosinas
{"title":"Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice","authors":"L. Georgiadis, K. Giannis, G. Italiano, E. Kosinas","doi":"10.4230/LIPIcs.SEA.2021.20","DOIUrl":null,"url":null,"abstract":"We consider two problems regarding the computation of connectivity cuts in undirected graphs, namely identifying vertex-edge cut-pairs and identifying 2-edge cuts, and present an experimental study of efficient algorithms for their computation. In the first problem, we are given a biconnected graph G and our goal is to find all vertices v such that G \\ v is not 2-edge-connected, while in the second problem, we are given a 2-edge-connected graph G and our goal is to find all edges e such that G \\ e is not 2-edge-connected. These problems are motivated by the notion of twinless strong connectivity in directed graphs but are also of independent interest. Moreover, the computation of 2-edge cuts is a main step in algorithms that compute the 3-edge-connected components of a graph. In this paper, we present streamlined versions of two recent linear-time algorithms of Georgiadis and Kosinas that compute all vertex-edge cut-pairs and all 2-edge cuts, respectively. We compare the empirical performance of our vertex-edge cut-pairs algorithm with an alternative linear-time method that exploits the structure of the triconnected components of G . Also, we compare the empirical performance of our 2-edge cuts algorithm with the algorithm of Tsin, which was reported to be the fastest one among the previously existing for this problem. To that end, we conduct a thorough experimental study to highlight the merits and weaknesses of each technique.","PeriodicalId":9448,"journal":{"name":"Bulletin of the Society of Sea Water Science, Japan","volume":"277 1","pages":"20:1-20:19"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Society of Sea Water Science, Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SEA.2021.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We consider two problems regarding the computation of connectivity cuts in undirected graphs, namely identifying vertex-edge cut-pairs and identifying 2-edge cuts, and present an experimental study of efficient algorithms for their computation. In the first problem, we are given a biconnected graph G and our goal is to find all vertices v such that G \ v is not 2-edge-connected, while in the second problem, we are given a 2-edge-connected graph G and our goal is to find all edges e such that G \ e is not 2-edge-connected. These problems are motivated by the notion of twinless strong connectivity in directed graphs but are also of independent interest. Moreover, the computation of 2-edge cuts is a main step in algorithms that compute the 3-edge-connected components of a graph. In this paper, we present streamlined versions of two recent linear-time algorithms of Georgiadis and Kosinas that compute all vertex-edge cut-pairs and all 2-edge cuts, respectively. We compare the empirical performance of our vertex-edge cut-pairs algorithm with an alternative linear-time method that exploits the structure of the triconnected components of G . Also, we compare the empirical performance of our 2-edge cuts algorithm with the algorithm of Tsin, which was reported to be the fastest one among the previously existing for this problem. To that end, we conduct a thorough experimental study to highlight the merits and weaknesses of each technique.