Co-Saliency Detection via Mask-Guided Fully Convolutional Networks With Multi-Scale Label Smoothing

Kaihua Zhang, Tengpeng Li, Bo Liu, Qingshan Liu
{"title":"Co-Saliency Detection via Mask-Guided Fully Convolutional Networks With Multi-Scale Label Smoothing","authors":"Kaihua Zhang, Tengpeng Li, Bo Liu, Qingshan Liu","doi":"10.1109/CVPR.2019.00321","DOIUrl":null,"url":null,"abstract":"In image co-saliency detection problem, one critical issue is how to model the concurrent pattern of the co-salient parts, which appears both within each image and across all the relevant images. In this paper, we propose a hierarchical image co-saliency detection framework as a coarse to fine strategy to capture this pattern. We first propose a mask-guided fully convolutional network structure to generate the initial co-saliency detection result. The mask is used for background removal and it is learned from the high-level feature response maps of the pre-trained VGG-net output. We next propose a multi-scale label smoothing model to further refine the detection result. The proposed model jointly optimizes the label smoothness of pixels and superpixels. Experiment results on three popular image co-saliency detection benchmark datasets including iCoseg, MSRC and Cosal2015 demonstrate the remarkable performance compared with the state-of-the-art methods.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"100 1","pages":"3090-3099"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

In image co-saliency detection problem, one critical issue is how to model the concurrent pattern of the co-salient parts, which appears both within each image and across all the relevant images. In this paper, we propose a hierarchical image co-saliency detection framework as a coarse to fine strategy to capture this pattern. We first propose a mask-guided fully convolutional network structure to generate the initial co-saliency detection result. The mask is used for background removal and it is learned from the high-level feature response maps of the pre-trained VGG-net output. We next propose a multi-scale label smoothing model to further refine the detection result. The proposed model jointly optimizes the label smoothness of pixels and superpixels. Experiment results on three popular image co-saliency detection benchmark datasets including iCoseg, MSRC and Cosal2015 demonstrate the remarkable performance compared with the state-of-the-art methods.
基于多尺度标签平滑的掩模引导全卷积网络的协显著性检测
在图像共显著性检测问题中,一个关键问题是如何对每个图像和所有相关图像中出现的共显著部分的并发模式进行建模。在本文中,我们提出了一种分层图像共显著性检测框架,作为一种从粗到细的策略来捕获这种模式。我们首先提出了一个掩模引导的全卷积网络结构来生成初始的共显著性检测结果。掩码用于背景去除,它是从预训练的VGG-net输出的高级特征响应图中学习的。接下来,我们提出了一个多尺度标签平滑模型来进一步细化检测结果。该模型对像素和超像素的标签平滑度进行了联合优化。在iCoseg、MSRC和Cosal2015三个流行的图像共显著性检测基准数据集上的实验结果表明,与现有方法相比,该方法具有显著的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信