{"title":"Design and Implementation of a Laboratory Sucker Rod Pumping Unit Using Industry 4.0 Concepts","authors":"Aditya Sharma, O. Bello, C. Teodoriu, H. Karami","doi":"10.21926/jept.2102030","DOIUrl":null,"url":null,"abstract":"The Industry 4.0 is here, and advanced technologies are widely available for domains such oil and gas which are traditionally slow in adopting extreme new technologies. This paper presents the design architecture and implementation of effective data acquisition (DAQ) and monitoring system applied to an experimental sucker rod pumping unit for both event occurrence and educational purpose using latest technological advancements and industry 4.0 principles. The designed framework allows control and monitoring of analog and digital sensors configured in a decentralized generation structure. This system controls the values of the sampling frequency, range of channels, the number of points to acquire and then retrieves the data acquired from the operation of a sucker rod pump setup. National Instruments LabVIEW was used for the solution architecture presented in this study data collection and diagnostic analysis. Some of the operational physical parameters analysed and monitored include pressure, fluid production rate, valve leakage, pump efficiency, vibrations and energy consumption. The proposed architecture can be built easily with very low energy consumption, high reliability, ample flexibility for quicker data retrieval and prospective future modifications.","PeriodicalId":53427,"journal":{"name":"Journal of Nuclear Energy Science and Power Generation Technology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy Science and Power Generation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/jept.2102030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2
Abstract
The Industry 4.0 is here, and advanced technologies are widely available for domains such oil and gas which are traditionally slow in adopting extreme new technologies. This paper presents the design architecture and implementation of effective data acquisition (DAQ) and monitoring system applied to an experimental sucker rod pumping unit for both event occurrence and educational purpose using latest technological advancements and industry 4.0 principles. The designed framework allows control and monitoring of analog and digital sensors configured in a decentralized generation structure. This system controls the values of the sampling frequency, range of channels, the number of points to acquire and then retrieves the data acquired from the operation of a sucker rod pump setup. National Instruments LabVIEW was used for the solution architecture presented in this study data collection and diagnostic analysis. Some of the operational physical parameters analysed and monitored include pressure, fluid production rate, valve leakage, pump efficiency, vibrations and energy consumption. The proposed architecture can be built easily with very low energy consumption, high reliability, ample flexibility for quicker data retrieval and prospective future modifications.