S. Osborne, Shareef Ahmed, Saujas Nandi, James H. Anderson
{"title":"Exploiting Simultaneous Multithreading in Priority-Driven Hard Real-Time Systems","authors":"S. Osborne, Shareef Ahmed, Saujas Nandi, James H. Anderson","doi":"10.1109/RTCSA50079.2020.9203575","DOIUrl":null,"url":null,"abstract":"Simultaneous multithreading (SMT) has the ability to dramatically improve real-time scheduling, but existing methods are cumbersome, frequently need specialized hardware, or are limited to producing table-based schedules. Here, an easily portable method for quickly applying SMT to priority-driven hard real-time systems is given. Using a combination of integer linear programming and heuristic bin-packing, a partitioned earliest-deadline-first (EDF) scheduler that takes advantage of SMT is produced. The integer linear programming and partitioning are done offline, but generally require only a few seconds, even given over a hundred tasks. A large-scale schedulability study is conducted, showing that compared to partitioned scheduling without SMT, the schedulable utilization for the considered hardware platform is nearly doubled in the best cases.","PeriodicalId":38446,"journal":{"name":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","volume":"113 1","pages":"1-10"},"PeriodicalIF":0.5000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTCSA50079.2020.9203575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
Simultaneous multithreading (SMT) has the ability to dramatically improve real-time scheduling, but existing methods are cumbersome, frequently need specialized hardware, or are limited to producing table-based schedules. Here, an easily portable method for quickly applying SMT to priority-driven hard real-time systems is given. Using a combination of integer linear programming and heuristic bin-packing, a partitioned earliest-deadline-first (EDF) scheduler that takes advantage of SMT is produced. The integer linear programming and partitioning are done offline, but generally require only a few seconds, even given over a hundred tasks. A large-scale schedulability study is conducted, showing that compared to partitioned scheduling without SMT, the schedulable utilization for the considered hardware platform is nearly doubled in the best cases.