Dimensionality of big data sets explored by Cluj descriptors

IF 0.5 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY
C. Lungu, S. Ersali, Beata Szefler, Atena Pîrvan-Moldovan, S. Basak, M. Diudea
{"title":"Dimensionality of big data sets explored by Cluj descriptors","authors":"C. Lungu, S. Ersali, Beata Szefler, Atena Pîrvan-Moldovan, S. Basak, M. Diudea","doi":"10.24193/SUBBCHEM.2017.3.16","DOIUrl":null,"url":null,"abstract":"Dimensionality of a relatively big data set (95 compounds) observed for toxicity (mutagenicity) was explored in order to compute QSAR models. Distinct molecular descriptors were used. Dimensionality of data, using PCA, correlation plots and clustering, was evaluated. Analyzing data dimensionality allowed model optimization. Docking studies and PCA were used in order to expand data dimensionality. Pearson correlation coefficient (r) values, obtained for both perceptive and predictive models, were satisfactory.","PeriodicalId":22005,"journal":{"name":"Studia Universitatis Babes-bolyai Chemia","volume":"32 1","pages":"197-204"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis Babes-bolyai Chemia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.24193/SUBBCHEM.2017.3.16","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

Dimensionality of a relatively big data set (95 compounds) observed for toxicity (mutagenicity) was explored in order to compute QSAR models. Distinct molecular descriptors were used. Dimensionality of data, using PCA, correlation plots and clustering, was evaluated. Analyzing data dimensionality allowed model optimization. Docking studies and PCA were used in order to expand data dimensionality. Pearson correlation coefficient (r) values, obtained for both perceptive and predictive models, were satisfactory.
Cluj描述符探索的大数据集的维度
为了计算QSAR模型,研究了一个相对较大的数据集(95种化合物)观察到的毒性(致突变性)的维度。使用了不同的分子描述符。采用主成分分析法、相关图和聚类法对数据的维数进行评价。分析数据维度允许模型优化。利用对接研究和主成分分析来扩展数据的维数。感知模型和预测模型的Pearson相关系数(r)值均令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
33.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: Studia Universitatis Babes-Bolyai, Seria Chemia publishes fundamental studies in all areas of chemistry and chemical engineering. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of reactions, inorganic, organic, organometallic chemistry, biochemistry, computational chemistry, solid-state phenomena, surface chemistry, chemical technology and environmental chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信