CAUCHY-HADAMARD THEOREM FOR EXPONENTIAL SERIES

IF 0.5 Q3 MATHEMATICS
S. G. Merzlyakov
{"title":"CAUCHY-HADAMARD THEOREM FOR EXPONENTIAL SERIES","authors":"S. G. Merzlyakov","doi":"10.13108/2014-6-1-71","DOIUrl":null,"url":null,"abstract":"In this paper we study the connection between the growth of coefficients of an exponentials series with its convergence domain in finite-dimensional real and complex spaces. Among the first results of the subject is the well-known Cauchy-Hadamard formula. We obtain exact conditions on the exponentials and a convex region in which there is a generalization of the Cauchy-Hadamard theorem. To the sequence of coefficients of exponential series we associate a space of sequences forming a commutative ring with unit. A study of the properties of this ring allows us to obtain the results on solvability of non- homogeneous systems of convolution equations.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"229 1","pages":"71-79"},"PeriodicalIF":0.5000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2014-6-1-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study the connection between the growth of coefficients of an exponentials series with its convergence domain in finite-dimensional real and complex spaces. Among the first results of the subject is the well-known Cauchy-Hadamard formula. We obtain exact conditions on the exponentials and a convex region in which there is a generalization of the Cauchy-Hadamard theorem. To the sequence of coefficients of exponential series we associate a space of sequences forming a commutative ring with unit. A study of the properties of this ring allows us to obtain the results on solvability of non- homogeneous systems of convolution equations.
指数级数的柯西-哈达玛定理
本文研究了有限维实空间和复空间中指数级数的系数增长与其收敛域之间的联系。这门学科最早的结果之一是著名的柯西-阿达玛公式。我们得到了指数的精确条件,并得到了柯西-阿达玛尔定理在凸区域的推广。对于指数级数的系数序列,我们将构成交换环的序列空间与单位联系起来。通过对该环性质的研究,得到了非齐次卷积方程组的可解性的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信