Hybrid Switched Capacitor DC-DC Converter Based On MMC

Marcus Vieira Soares, G. Lambert, Y. Rômulo de Novaes
{"title":"Hybrid Switched Capacitor DC-DC Converter Based On MMC","authors":"Marcus Vieira Soares, G. Lambert, Y. Rômulo de Novaes","doi":"10.1109/COBEP/SPEC44138.2019.9065576","DOIUrl":null,"url":null,"abstract":"Different types of dc-dc converters have been subject of research to fulfill the need of interconnecting renewable generation sources, existing or new grids, electronic loads and battery based systems. To deal with high voltage levels and high power, Modular Multilevel Converter based structures have been proposed. On the other hand, for lower power ratings, Switched Capacitor and Hybrid Switched Capacitor converters have emerged due to their simple structures and self voltage balancing characteristics. In this scenario, a non-isolated Hybrid Switched Capacitor dc-dc converter based on Modular Multilevel Converter is proposed and its unidirectional structure is examined through circuit analysis. In the proposed converter, the voltage static gain is independent of the number of submodules, allowing a good regulation range of the output voltage for high voltage applications. Moreover, the Switched Capacitor behavior provides automatic clamp of the arms voltages, avoiding the need of ac loops to perform the arms voltage balance. A converter design methodology based on current spikes limitation is also proposed. All the theoretical analysis and the design methodology are validated through comparisons with simulated waveforms.","PeriodicalId":69617,"journal":{"name":"电力电子","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电力电子","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/COBEP/SPEC44138.2019.9065576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Different types of dc-dc converters have been subject of research to fulfill the need of interconnecting renewable generation sources, existing or new grids, electronic loads and battery based systems. To deal with high voltage levels and high power, Modular Multilevel Converter based structures have been proposed. On the other hand, for lower power ratings, Switched Capacitor and Hybrid Switched Capacitor converters have emerged due to their simple structures and self voltage balancing characteristics. In this scenario, a non-isolated Hybrid Switched Capacitor dc-dc converter based on Modular Multilevel Converter is proposed and its unidirectional structure is examined through circuit analysis. In the proposed converter, the voltage static gain is independent of the number of submodules, allowing a good regulation range of the output voltage for high voltage applications. Moreover, the Switched Capacitor behavior provides automatic clamp of the arms voltages, avoiding the need of ac loops to perform the arms voltage balance. A converter design methodology based on current spikes limitation is also proposed. All the theoretical analysis and the design methodology are validated through comparisons with simulated waveforms.
基于MMC的混合开关电容DC-DC变换器
不同类型的dc-dc转换器一直是研究的主题,以满足互联可再生能源、现有或新的电网、电子负载和基于电池的系统的需求。为了解决高电压电平和大功率的问题,提出了基于模块化多电平变换器的结构。另一方面,对于较低的额定功率,开关电容器和混合开关电容器变换器由于其结构简单和自电压平衡特性而出现。在这种情况下,提出了一种基于模块化多电平变换器的非隔离混合开关电容dc-dc变换器,并通过电路分析对其单向结构进行了检验。在所提出的变换器中,电压静态增益与子模块的数量无关,允许高压应用的输出电压的良好调节范围。此外,开关电容的行为提供了臂电压的自动箝位,避免了交流回路执行臂电压平衡的需要。提出了一种基于电流尖峰限制的变换器设计方法。通过与仿真波形的比较,验证了理论分析和设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
57
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信