OPERATORS ON THE BESOV SPACES OF HOLOMORPHIC FUNCTIONS ON THE UNIT BALL IN $\mathbb{C}^n$

A. Harutyunyan, W. Lusky
{"title":"OPERATORS ON THE BESOV SPACES OF HOLOMORPHIC FUNCTIONS ON THE UNIT BALL IN $\\mathbb{C}^n$","authors":"A. Harutyunyan, W. Lusky","doi":"10.46991/pysu:a/2017.51.2.139","DOIUrl":null,"url":null,"abstract":"In the present paper we consider the Toeplitz-$T_{\\bar{h}}^{ \\alpha}$ and differentiation-$D^\\delta $ operators on the Besov spaces $B_p(\\beta)$ for all $0< p<\\infty.$ We show that $T_{\\bar{h}}^{ \\alpha}: B_p(\\beta)\\rightarrow B_p(\\beta)$ for $\\bar h\\in H^\\infty(B^n)$ and $D^\\delta :B_p(\\beta)\\rightarrow B_p(\\widetilde\\beta)$, where  $\\widetilde\\beta=\\beta +p\\delta .$","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2017.51.2.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper we consider the Toeplitz-$T_{\bar{h}}^{ \alpha}$ and differentiation-$D^\delta $ operators on the Besov spaces $B_p(\beta)$ for all $0< p<\infty.$ We show that $T_{\bar{h}}^{ \alpha}: B_p(\beta)\rightarrow B_p(\beta)$ for $\bar h\in H^\infty(B^n)$ and $D^\delta :B_p(\beta)\rightarrow B_p(\widetilde\beta)$, where  $\widetilde\beta=\beta +p\delta .$
单位球上全纯函数BESOV空间上的算子
在本文中,我们考虑了所有$0< p<\infty.$的Besov空间$B_p(\beta)$上的Toeplitz- $T_{\bar{h}}^{ \alpha}$和differentiation- $D^\delta $算子,我们证明了$T_{\bar{h}}^{ \alpha}: B_p(\beta)\rightarrow B_p(\beta)$对于$\bar h\in H^\infty(B^n)$和$D^\delta :B_p(\beta)\rightarrow B_p(\widetilde\beta)$,其中 $\widetilde\beta=\beta +p\delta .$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信