Catalytic performance of yttrium-doped co/mesoporous alumina catalysts for methane dry reforming

M. Bahari, T. Nguyen, Sharanjit Singh, T. J. Siang, M. N. Shafiqah, L. N. Jun, P. Phuong, N. Ainirazali, D. Vo
{"title":"Catalytic performance of yttrium-doped co/mesoporous alumina catalysts for methane dry reforming","authors":"M. Bahari, T. Nguyen, Sharanjit Singh, T. J. Siang, M. N. Shafiqah, L. N. Jun, P. Phuong, N. Ainirazali, D. Vo","doi":"10.1063/1.5117078","DOIUrl":null,"url":null,"abstract":"A series of mesoporous alumina (MA) supported cobalt-based catalysts with different yttrium promoter (0-5 wt.%) loading was synthesized by sequential incipient wetness impregnation (SIWI) approach and extensively investigated for methane dry reforming (MDR) reaction. The characterization results confirmed the formation of Co 3 O 4 and CoAl 2 O 4 phases on both fresh 10%Co/MA and 3%Y 10%Co/MA catalysts. Interestingly, the average crystallite size of Co 3 O 4 was reduced by 1.63% for yttrium-doped catalyst due to dilution effect which suppresses Co 3 O 4 agglomeration. It was also found that the yttrium promoter facilitated superior metal-support interaction compared to unpromoted catalyst. The catalyst with 3 wt.% of yttrium loading exhibited the highest catalytic conversion for CH 4 and CO 2 of about 85.8% and 90.5%, respectively. This improved activity can be ascribed to excellent cobalt dispersion and stronger metal-support interaction in the presence of Y 2 O 3 promoter. Irrespective of the catalyst, the carbon nanofilaments and graphitic carbon were detected on the surface of all the used catalyst, but the quantity of deposited carbon was comparatively smaller for Y 2 O 3 promoted catalyst. This was possibly due to its high oxygen mobility attributes, which enables rapid rate of carbon removal compared to carbon deposition on the surface of catalyst.","PeriodicalId":6836,"journal":{"name":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5117078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A series of mesoporous alumina (MA) supported cobalt-based catalysts with different yttrium promoter (0-5 wt.%) loading was synthesized by sequential incipient wetness impregnation (SIWI) approach and extensively investigated for methane dry reforming (MDR) reaction. The characterization results confirmed the formation of Co 3 O 4 and CoAl 2 O 4 phases on both fresh 10%Co/MA and 3%Y 10%Co/MA catalysts. Interestingly, the average crystallite size of Co 3 O 4 was reduced by 1.63% for yttrium-doped catalyst due to dilution effect which suppresses Co 3 O 4 agglomeration. It was also found that the yttrium promoter facilitated superior metal-support interaction compared to unpromoted catalyst. The catalyst with 3 wt.% of yttrium loading exhibited the highest catalytic conversion for CH 4 and CO 2 of about 85.8% and 90.5%, respectively. This improved activity can be ascribed to excellent cobalt dispersion and stronger metal-support interaction in the presence of Y 2 O 3 promoter. Irrespective of the catalyst, the carbon nanofilaments and graphitic carbon were detected on the surface of all the used catalyst, but the quantity of deposited carbon was comparatively smaller for Y 2 O 3 promoted catalyst. This was possibly due to its high oxygen mobility attributes, which enables rapid rate of carbon removal compared to carbon deposition on the surface of catalyst.
掺钇co/介孔氧化铝催化剂对甲烷干重整的催化性能
采用序贯湿浸渍法(SIWI)合成了一系列不同钇促进剂(0-5 wt.%)负载的介孔氧化铝(MA)负载钴基催化剂,并对其用于甲烷干重整(MDR)反应进行了广泛的研究。表征结果证实,在新鲜的10%Co/MA和3%Y 10%Co/MA催化剂上均可形成co3o4和CoAl 2o4相。有趣的是,掺钇催化剂的稀释效应抑制了co_3o_4的团聚,使co_3o_4的平均晶粒尺寸减小了1.63%。研究还发现,与未促进的催化剂相比,钇促进剂促进了更好的金属-载体相互作用。负载钇量为3wt .%的催化剂对ch4和CO 2的催化转化率最高,分别为85.8%和90.5%。这种活性的提高可以归因于良好的钴分散和在y2o3促进剂存在下更强的金属-载体相互作用。不同催化剂的表面均存在碳纳米丝和石墨碳,但y2o3促进催化剂表面沉积的碳较少。这可能是由于它的高氧迁移特性,与碳沉积在催化剂表面相比,它可以快速去除碳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信