BRIDEMAID: An Hybrid Tool for Accurate Detection of Android Malware

F. Martinelli, F. Mercaldo, A. Saracino
{"title":"BRIDEMAID: An Hybrid Tool for Accurate Detection of Android Malware","authors":"F. Martinelli, F. Mercaldo, A. Saracino","doi":"10.1145/3052973.3055156","DOIUrl":null,"url":null,"abstract":"This paper presents BRIDEMAID, a framework which exploits an approach static and dynamic for accurate detection of Android malware. The static analysis is based on n-grams matching, whilst the dynamic analysis is based on multi-level monitoring of device, app and user behavior. The framework has been tested against 2794 malicious apps reporting a detection accuracy of 99,7% and a negligible false positive rate, tested on a set of 10k genuine apps.","PeriodicalId":20540,"journal":{"name":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3052973.3055156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

This paper presents BRIDEMAID, a framework which exploits an approach static and dynamic for accurate detection of Android malware. The static analysis is based on n-grams matching, whilst the dynamic analysis is based on multi-level monitoring of device, app and user behavior. The framework has been tested against 2794 malicious apps reporting a detection accuracy of 99,7% and a negligible false positive rate, tested on a set of 10k genuine apps.
BRIDEMAID:一个精确检测Android恶意软件的混合工具
本文提出了BRIDEMAID框架,该框架利用静态和动态两种方法来精确检测Android恶意软件。静态分析基于n图匹配,而动态分析基于对设备、应用程序和用户行为的多级监控。该框架已经对2794个恶意应用程序进行了测试,报告检测准确率为99.7%,假阳性率可以忽略不计,在一组10k个真正的应用程序上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信