Electronic properties of twisted multilayer graphene

IF 2.9 4区 物理与天体物理 Q2 OPTICS
V. Nguyen, X. Trinh, J. Charlier
{"title":"Electronic properties of twisted multilayer graphene","authors":"V. Nguyen, X. Trinh, J. Charlier","doi":"10.1088/2515-7639/ac6c4a","DOIUrl":null,"url":null,"abstract":"Twisted bilayer graphene displays many fascinating properties that can be tuned by varying the relative angle (also called twist angle) between its layers. As a notable feature, both the electronic flat bands and the corresponding strong electron localization have been obtained at a specific ‘magic’ angle ( ∼1.1∘ ), leading to the observation of several strongly correlated electronic phenomena. Such a discovery has hence inspired the creation of a novel research field called twistronics, i.e. aiming to explore novel physical properties in vertically stacked 2D structures when tuning the twist angle between the related layers. In this paper, a comprehensive and systematic study related to the electronic properties of twisted multilayer graphene (TMG) is presented based on atomistic calculations. The dependence of both the global and the local electronic quantities on the twist angle and on the stacking configuration are analyzed, fully taking into account atomic reconstruction effects. Consequently, the correlation between structural and electronic properties are clarified, thereby highlighting the shared characteristics and differences between various TMG systems as well as providing a comprehensive and essential overview. On the basis of these investigations, possibilities to tune the electronic properties are discussed, allowing for further developments in the field of twistronics.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/ac6c4a","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 8

Abstract

Twisted bilayer graphene displays many fascinating properties that can be tuned by varying the relative angle (also called twist angle) between its layers. As a notable feature, both the electronic flat bands and the corresponding strong electron localization have been obtained at a specific ‘magic’ angle ( ∼1.1∘ ), leading to the observation of several strongly correlated electronic phenomena. Such a discovery has hence inspired the creation of a novel research field called twistronics, i.e. aiming to explore novel physical properties in vertically stacked 2D structures when tuning the twist angle between the related layers. In this paper, a comprehensive and systematic study related to the electronic properties of twisted multilayer graphene (TMG) is presented based on atomistic calculations. The dependence of both the global and the local electronic quantities on the twist angle and on the stacking configuration are analyzed, fully taking into account atomic reconstruction effects. Consequently, the correlation between structural and electronic properties are clarified, thereby highlighting the shared characteristics and differences between various TMG systems as well as providing a comprehensive and essential overview. On the basis of these investigations, possibilities to tune the electronic properties are discussed, allowing for further developments in the field of twistronics.
扭曲多层石墨烯的电子特性
扭曲双层石墨烯显示出许多迷人的特性,可以通过改变其层之间的相对角度(也称为扭转角)来调节。一个显著的特点是,在特定的“魔”角(∼1.1°)下获得了电子平带和相应的强电子局域化,从而观察到几种强相关的电子现象。因此,这一发现激发了一个新的研究领域的创建,称为扭转电子学,即旨在通过调整相关层之间的扭转角度来探索垂直堆叠二维结构的新物理特性。本文基于原子计算对扭曲多层石墨烯(TMG)的电子特性进行了全面系统的研究。在充分考虑原子重构效应的情况下,分析了全局和局部电子量对扭转角和堆叠构型的依赖关系。因此,澄清了结构和电子特性之间的相关性,从而突出了各种TMG系统之间的共同特征和差异,并提供了全面和基本的概述。在这些研究的基础上,讨论了调整电子特性的可能性,允许在双电子学领域的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
48.10%
发文量
53
审稿时长
3 months
期刊介绍: This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信