{"title":"Stability of stationary solutions of singular systems of balance laws","authors":"N. Seguin","doi":"10.5802/cml.52","DOIUrl":null,"url":null,"abstract":"The stability of stationary solutions of first-order systems of PDE's are considered. They may include some singular geometric terms, leading to discontinuous flux and non-conservative products. Based on several examples in Fluid Mechanics, we assume that these systems are endowed with a partially convex entropy. We first construct an associated relative entropy which allows to compare two states which share the same geometric data. This way, we are able to prove the stability of some stationary states within entropy weak solutions. This result applies for instance to the shallow-water equations with bathymetry. Besides, this relative entropy can be used to study finite volume schemes which are entropy-stable and well-balanced, and due to the numerical dissipation inherent to these methods, asymptotic stability of discrete stationary solutions is obtained. This analysis does not make us of any specific definition of the non-conservative products, applies to non-strictly hyperbolic systems, and is fully multidimensional with unstructured meshes for the numerical methods.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/cml.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The stability of stationary solutions of first-order systems of PDE's are considered. They may include some singular geometric terms, leading to discontinuous flux and non-conservative products. Based on several examples in Fluid Mechanics, we assume that these systems are endowed with a partially convex entropy. We first construct an associated relative entropy which allows to compare two states which share the same geometric data. This way, we are able to prove the stability of some stationary states within entropy weak solutions. This result applies for instance to the shallow-water equations with bathymetry. Besides, this relative entropy can be used to study finite volume schemes which are entropy-stable and well-balanced, and due to the numerical dissipation inherent to these methods, asymptotic stability of discrete stationary solutions is obtained. This analysis does not make us of any specific definition of the non-conservative products, applies to non-strictly hyperbolic systems, and is fully multidimensional with unstructured meshes for the numerical methods.
期刊介绍:
Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.