Cherifi Mouna, Belkacem Merzouk, Hazourli Sabir, D. Laefer, Atba Wafa
{"title":"A comparative study of hydrogen peroxide oxidation and electrocoagulation using aluminum, iron, and zinc electrodes for urban sludge disintegration","authors":"Cherifi Mouna, Belkacem Merzouk, Hazourli Sabir, D. Laefer, Atba Wafa","doi":"10.1080/01496395.2023.2213395","DOIUrl":null,"url":null,"abstract":"ABSTRACT Municipal and industrial wastewater treatment plants produce large amounts of sludge containing high levels of organic, chemical, and microbial pollutants. Unless stabilized completely and discharged safely, they may become potential pollution sources threatening soil and water bodies. This study investigated H2O2 oxidation and electrocoagulation as pretreatments to improve stabilization of an urban sludge. The H2O2 oxidation was optimized with respect to H2O2 dosage and initial sludge pH-H2O2. Batch electrocoagulation experiments were conducted using aluminum, iron, and zinc electrodes to investigate the effect of treatment period, current density, and pH. The effectiveness was compared in terms of solubilization of sludge, disintegration degree, and reduction of total solids. Sludge settling velocity after disintegration by both H2O2 oxidation and electrocoagulation were measured with respect to the operating conditions. The obtained results indicated that the high rate of sludge disintegration (63.3%) was obtained with aluminum electrodes, which has lower operating costs than iron and zinc electrodes. The H2O2 oxidation reached a maximum disintegration degree of 50%. Additionally, with aluminum and iron electrodes, sludge settleability was enhanced with both H2O2 oxidation and electrocoagulation.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"238 1","pages":"1806 - 1820"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2213395","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Municipal and industrial wastewater treatment plants produce large amounts of sludge containing high levels of organic, chemical, and microbial pollutants. Unless stabilized completely and discharged safely, they may become potential pollution sources threatening soil and water bodies. This study investigated H2O2 oxidation and electrocoagulation as pretreatments to improve stabilization of an urban sludge. The H2O2 oxidation was optimized with respect to H2O2 dosage and initial sludge pH-H2O2. Batch electrocoagulation experiments were conducted using aluminum, iron, and zinc electrodes to investigate the effect of treatment period, current density, and pH. The effectiveness was compared in terms of solubilization of sludge, disintegration degree, and reduction of total solids. Sludge settling velocity after disintegration by both H2O2 oxidation and electrocoagulation were measured with respect to the operating conditions. The obtained results indicated that the high rate of sludge disintegration (63.3%) was obtained with aluminum electrodes, which has lower operating costs than iron and zinc electrodes. The H2O2 oxidation reached a maximum disintegration degree of 50%. Additionally, with aluminum and iron electrodes, sludge settleability was enhanced with both H2O2 oxidation and electrocoagulation.
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.