A new adjoint problem for two-dimensional helmholtz equation to calculate topological derivatives of the objective functional having tangential derivative quantities
Peijun Tang, Toshiro Matsumoto, H. Isakari, Toru Takahashi
{"title":"A new adjoint problem for two-dimensional helmholtz equation to calculate topological derivatives of the objective functional having tangential derivative quantities","authors":"Peijun Tang, Toshiro Matsumoto, H. Isakari, Toru Takahashi","doi":"10.2495/CMEM-V9-N1-74-82","DOIUrl":null,"url":null,"abstract":"A special topology optimization problem is considered whose objective functional consists of tangential derivative of the potential on the boundary for two-dimensional Helmholtz equation. In order to derive the adjoint problem, the functional of the conventional topology optimizations required a boundary integral of the potential and its flux. For the present objective functional having the tangential derivative, integration by parts is applied to the part having the tangential derivative of the variation of the potential to generate a tractable adjoint problem. The derived adjoint problem is used in the variation of the objective function, and the topological derivative is derived in the conventional expression.","PeriodicalId":22520,"journal":{"name":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","volume":"341 1","pages":"74-82"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/CMEM-V9-N1-74-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A special topology optimization problem is considered whose objective functional consists of tangential derivative of the potential on the boundary for two-dimensional Helmholtz equation. In order to derive the adjoint problem, the functional of the conventional topology optimizations required a boundary integral of the potential and its flux. For the present objective functional having the tangential derivative, integration by parts is applied to the part having the tangential derivative of the variation of the potential to generate a tractable adjoint problem. The derived adjoint problem is used in the variation of the objective function, and the topological derivative is derived in the conventional expression.