{"title":"Research on Application of Generative Adversarial Neural Network in Image Restoration","authors":"Yin'e Zhang, Xiaowen Ye, Qi Zhou","doi":"10.1109/CSCloud-EdgeCom58631.2023.00056","DOIUrl":null,"url":null,"abstract":"In recent years, more and more researchers use deep learning to process inpainting tasks. Among them, the use of generation countermeasure network to process inpainting tasks has become more and more popular and has achieved good results. However, there are still issues with blurry repair results and unsmooth structure. In this paper, we propose a method of inpainting based on u-net structure for generation adversarial network, the first two layers of our encoder use multi-scale shallow feature extraction modules (MSFEM) to extract lowdimensional texture and structural information. We introduce multi-scale spatial attention module (MSAM) into skip connections to obtain more shallow features and improve repair performance. The decoder uses improved dense convolutional blocks to fully utilize and extract feature information. The experiment used two datasets, CelebA and Palace2, through experiments, the repair effect of our proposed method is better than the state-of-the-art image inpainting approaches.","PeriodicalId":56007,"journal":{"name":"Journal of Cloud Computing-Advances Systems and Applications","volume":"79 1","pages":"287-291"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing-Advances Systems and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCloud-EdgeCom58631.2023.00056","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, more and more researchers use deep learning to process inpainting tasks. Among them, the use of generation countermeasure network to process inpainting tasks has become more and more popular and has achieved good results. However, there are still issues with blurry repair results and unsmooth structure. In this paper, we propose a method of inpainting based on u-net structure for generation adversarial network, the first two layers of our encoder use multi-scale shallow feature extraction modules (MSFEM) to extract lowdimensional texture and structural information. We introduce multi-scale spatial attention module (MSAM) into skip connections to obtain more shallow features and improve repair performance. The decoder uses improved dense convolutional blocks to fully utilize and extract feature information. The experiment used two datasets, CelebA and Palace2, through experiments, the repair effect of our proposed method is better than the state-of-the-art image inpainting approaches.
期刊介绍:
The Journal of Cloud Computing: Advances, Systems and Applications (JoCCASA) will publish research articles on all aspects of Cloud Computing. Principally, articles will address topics that are core to Cloud Computing, focusing on the Cloud applications, the Cloud systems, and the advances that will lead to the Clouds of the future. Comprehensive review and survey articles that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.