P. Eulzer, R. Rockenfeller, K. Lawonn
{"title":"HAExplorer","authors":"P. Eulzer, R. Rockenfeller, K. Lawonn","doi":"10.1145/3491102.3501841","DOIUrl":null,"url":null,"abstract":"The helical axis is a common tool used in biomechanical modeling to parameterize the motion of rigid objects. It encodes an object’s rotation around and translation along a unique axis. Visualizations of helical axes have helped to make kinematic data tangible. However, the analysis process often remains tedious, especially if complex motions are examined. We identify multiple key challenges: the absence of interactive tools for the computation and handling of helical axes, visual clutter in axis representations, and a lack of contextualization. We solve these issues by providing the frst generalized framework for kinematic analysis with helical axes. Axis sets can be computed on-demand, interactively fltered, and explored in multiple coordinated views. We iteratively developed and Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for proft or commercial advantage and that copies bear this notice and the full citation on the frst page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specifc permission and/or a fee. Request permissions from permissions@acm.org. CHI 2022, April 30 – May 6, 2022, New Orleans, LA © 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00 https://doi.org/10.1145/3491102.3501841 evaluated the HAExplorer with active biomechanics researchers. Our results show that the techniques we introduce open up the possibility to analyze non-planar, compound, and interdependent motion data.","PeriodicalId":20454,"journal":{"name":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491102.3501841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
螺旋轴是生物力学建模中用于参数化刚性物体运动的常用工具。它编码对象的旋转和顺唯一轴的平移。螺旋轴的可视化有助于使运动学数据具体化。然而,分析过程往往仍然是乏味的,特别是在检查复杂的运动时。我们确定了多个关键挑战:缺乏用于计算和处理螺旋轴的交互式工具,轴表示中的视觉混乱,以及缺乏上下文化。我们通过提供第一个用于螺旋轴运动分析的广义框架来解决这些问题。轴集可以按需计算,交互过滤,并在多个协调视图中探索。我们反复开发并允许免费制作本作品的全部或部分数字或硬拷贝供个人或课堂使用,前提是副本不是为了盈利或商业利益而制作或分发的,并且副本在第一页上带有本通知和完整的引用。本作品的版权由作者以外的人所有,必须得到尊重。允许有信用的摘要。以其他方式复制或重新发布,在服务器上发布或重新分发到列表,需要事先获得特定许可和/或付费。从permissions@acm.org请求权限。CHI 2022, 2022年4月30日至5月6日,新奥尔良,LA©2022版权归所有者/作者所有。授权给ACM的出版权。Acm isbn 978-1-4503-9157-3/22/04…$15.00 https://doi.org/10.1145/3491102.3501841与活跃的生物力学研究人员一起评估HAExplorer。我们的结果表明,我们引入的技术开辟了分析非平面、复合和相互依赖的运动数据的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。