V. O. Juma, L. Dehmelt, Stéphanie Portet, A. Madzvamuse
{"title":"A mathematical analysis of an activator-inhibitor Rho GTPase model","authors":"V. O. Juma, L. Dehmelt, Stéphanie Portet, A. Madzvamuse","doi":"10.3934/jcd.2021024","DOIUrl":null,"url":null,"abstract":"Recent experimental observations reveal that local cellular contraction pulses emerge via a combination of fast positive and slow negative feedbacks based on a signal network composed of Rho, GEF and Myosin interactions [22]. As an examplary, we propose to study a plausible, hypothetical temporal model that mirrors general principles of fast positive and slow negative feedback, a hallmark for activator-inhibitor models. The methodology involves (ⅰ) a qualitative analysis to unravel system switching between different states (stable, excitable, oscillatory and bistable) through model parameter variations; (ⅱ) a numerical bifurcation analysis using the positive feedback mediator concentration as a bifurcation parameter, (ⅲ) a sensitivity analysis to quantify the effect of parameter uncertainty on the model output for different dynamic regimes of the model system; and (ⅳ) numerical simulations of the model system for model predictions. Our methodological approach supports the role of mathematical and computational models in unravelling mechanisms for molecular and developmental processes and provides tools for analysis of temporal models of this nature.","PeriodicalId":37526,"journal":{"name":"Journal of Computational Dynamics","volume":"178 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jcd.2021024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
Recent experimental observations reveal that local cellular contraction pulses emerge via a combination of fast positive and slow negative feedbacks based on a signal network composed of Rho, GEF and Myosin interactions [22]. As an examplary, we propose to study a plausible, hypothetical temporal model that mirrors general principles of fast positive and slow negative feedback, a hallmark for activator-inhibitor models. The methodology involves (ⅰ) a qualitative analysis to unravel system switching between different states (stable, excitable, oscillatory and bistable) through model parameter variations; (ⅱ) a numerical bifurcation analysis using the positive feedback mediator concentration as a bifurcation parameter, (ⅲ) a sensitivity analysis to quantify the effect of parameter uncertainty on the model output for different dynamic regimes of the model system; and (ⅳ) numerical simulations of the model system for model predictions. Our methodological approach supports the role of mathematical and computational models in unravelling mechanisms for molecular and developmental processes and provides tools for analysis of temporal models of this nature.
期刊介绍:
JCD is focused on the intersection of computation with deterministic and stochastic dynamics. The mission of the journal is to publish papers that explore new computational methods for analyzing dynamic problems or use novel dynamical methods to improve computation. The subject matter of JCD includes both fundamental mathematical contributions and applications to problems from science and engineering. A non-exhaustive list of topics includes * Computation of phase-space structures and bifurcations * Multi-time-scale methods * Structure-preserving integration * Nonlinear and stochastic model reduction * Set-valued numerical techniques * Network and distributed dynamics JCD includes both original research and survey papers that give a detailed and illuminating treatment of an important area of current interest. The editorial board of JCD consists of world-leading researchers from mathematics, engineering, and science, all of whom are experts in both computational methods and the theory of dynamical systems.