Review of high temperature materials

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. Findik
{"title":"Review of high temperature materials","authors":"F. Findik","doi":"10.37868/hsd.v5i2.163","DOIUrl":null,"url":null,"abstract":"High-temperature materials play a significant role in sustainable engineering across various industries and applications. Sustainable engineering aims to design, develop, and implement solutions that minimize environmental impact, enhance resource efficiency, and promote long-term sustainability. The availability of substances that can be used efficiently at high temperatures allows pushing the limits of possible measurable demands. These substances include ceramics, polymers and metals. It is used in elevated temperature materials, aircraft and space structures, and space exploration. In this study, high temperature metals are classified including superalloys, platinum and refractory metals, refractory metals such as W, Nb, Mo, Ta. Also, ceramic materials are high temperature materials. Ceramics are criticized to use in elevated temperature due to their high hardness, extraordinary strength in compression, excellent thermal stability, short-term thermal extension and tremendously great melting temperature. Ceramics that encounter these standards are carbides and borides of Zr, Nb, Ta, Ti and Hf. In addition, steel, nickel and copper alloys used in aircraft engines, space shuttles and turbine blades from aerospace materials were investigated. In addition, powder metallurgy and sintering techniques, which are the most widely used production methods of high temperature materials, are emphasized. In this study, important characterization techniques for analyzing some sample surface and subsurface properties are reviewed. Again, in this study, the use of AES, XPS, SSIMS and LEED methods for the chemical examination of surfaces is discussed. Optical, electron, and scanning probe microscopy is used for pictorial inspection of inspection specimens and structures, obtaining data on surface, shape, colors, and numerous additional physical properties. Here, AFM, SEM, TEM, EDX, FIB and EMP methods are discussed. Among the material analysis devices, XRD, x-ray fluorescence spectrometry, low energy electron diffraction, neutron diffraction and electron microprobe devices were examined.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37868/hsd.v5i2.163","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature materials play a significant role in sustainable engineering across various industries and applications. Sustainable engineering aims to design, develop, and implement solutions that minimize environmental impact, enhance resource efficiency, and promote long-term sustainability. The availability of substances that can be used efficiently at high temperatures allows pushing the limits of possible measurable demands. These substances include ceramics, polymers and metals. It is used in elevated temperature materials, aircraft and space structures, and space exploration. In this study, high temperature metals are classified including superalloys, platinum and refractory metals, refractory metals such as W, Nb, Mo, Ta. Also, ceramic materials are high temperature materials. Ceramics are criticized to use in elevated temperature due to their high hardness, extraordinary strength in compression, excellent thermal stability, short-term thermal extension and tremendously great melting temperature. Ceramics that encounter these standards are carbides and borides of Zr, Nb, Ta, Ti and Hf. In addition, steel, nickel and copper alloys used in aircraft engines, space shuttles and turbine blades from aerospace materials were investigated. In addition, powder metallurgy and sintering techniques, which are the most widely used production methods of high temperature materials, are emphasized. In this study, important characterization techniques for analyzing some sample surface and subsurface properties are reviewed. Again, in this study, the use of AES, XPS, SSIMS and LEED methods for the chemical examination of surfaces is discussed. Optical, electron, and scanning probe microscopy is used for pictorial inspection of inspection specimens and structures, obtaining data on surface, shape, colors, and numerous additional physical properties. Here, AFM, SEM, TEM, EDX, FIB and EMP methods are discussed. Among the material analysis devices, XRD, x-ray fluorescence spectrometry, low energy electron diffraction, neutron diffraction and electron microprobe devices were examined.
回顾高温材料
高温材料在各种行业和应用的可持续工程中发挥着重要作用。可持续工程旨在设计、开发和实施解决方案,最大限度地减少对环境的影响,提高资源效率,促进长期可持续性。可以在高温下有效使用的物质的可用性可以推动可能的可测量需求的极限。这些物质包括陶瓷、聚合物和金属。它被用于高温材料、飞机和空间结构以及空间探索。在本研究中,对高温金属进行分类,包括高温合金、铂和难熔金属,难熔金属如W、Nb、Mo、Ta。此外,陶瓷材料是高温材料。陶瓷由于其高硬度、非凡的抗压强度、优异的热稳定性、短期的热延展性和极高的熔化温度而被批评在高温下使用。符合这些标准的陶瓷是Zr、Nb、Ta、Ti和Hf的碳化物和硼化物。此外,还研究了航空航天材料中用于飞机发动机、航天飞机和涡轮叶片的钢、镍和铜合金。此外,重点介绍了目前应用最广泛的高温材料生产方法——粉末冶金和烧结技术。本文综述了用于分析某些样品表面和地下性质的重要表征技术。再次,在本研究中,讨论了使用AES, XPS, SSIMS和LEED方法对表面进行化学检查。光学、电子和扫描探针显微镜用于检测样品和结构的图像检查,获得表面、形状、颜色和许多其他物理性质的数据。本文讨论了AFM、SEM、TEM、EDX、FIB和EMP等方法。在材料分析设备中,采用了XRD、x射线荧光光谱、低能电子衍射、中子衍射和电子探针等设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信