Caiming Li , Qi Xu , Zhengbiao Gu , Shuangdi Chen , Jing Wu , Yan Hong , Li Cheng , Zhaofeng Li
{"title":"Cyclodextrin glycosyltransferase variants experience different modes of product inhibition","authors":"Caiming Li , Qi Xu , Zhengbiao Gu , Shuangdi Chen , Jing Wu , Yan Hong , Li Cheng , Zhaofeng Li","doi":"10.1016/j.molcatb.2016.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclodextrin glycosyltransferase (CGTase) can be used for the industrial production of cyclodextrins. However, product inhibition by cyclodextrins largely restrains the cyclization activities of CGTase and severely limits the application of cyclodextrins. In this paper, the kinetic mechanisms of the three kinds of cyclization reaction were studied, and the product inhibition modes of two CGTases from different sources were compared. The results confirm that the synthesis of each cyclodextrin is substantially inhibited by the corresponding cyclodextrin. Meanwhile, product inhibition studies indicate competitive inhibition for α-CGTase and a mixed pattern for β-CGTase. This demonstrates that the inhibition type is not decided by the kinds of cyclodextrins or the varieties of cyclization reactions, but by the structure of the CGTase.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages 203-210"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.08.016","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716301606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 7
Abstract
Cyclodextrin glycosyltransferase (CGTase) can be used for the industrial production of cyclodextrins. However, product inhibition by cyclodextrins largely restrains the cyclization activities of CGTase and severely limits the application of cyclodextrins. In this paper, the kinetic mechanisms of the three kinds of cyclization reaction were studied, and the product inhibition modes of two CGTases from different sources were compared. The results confirm that the synthesis of each cyclodextrin is substantially inhibited by the corresponding cyclodextrin. Meanwhile, product inhibition studies indicate competitive inhibition for α-CGTase and a mixed pattern for β-CGTase. This demonstrates that the inhibition type is not decided by the kinds of cyclodextrins or the varieties of cyclization reactions, but by the structure of the CGTase.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.