Towards Excursion Detection for Implant Layers based on Virtual Overlay Metrology

Leon van Dijk, K. M. Adal, Mathias Chastan, A. Lam, M. Larrañaga, Richard J. F. van Haren
{"title":"Towards Excursion Detection for Implant Layers based on Virtual Overlay Metrology","authors":"Leon van Dijk, K. M. Adal, Mathias Chastan, A. Lam, M. Larrañaga, Richard J. F. van Haren","doi":"10.1109/ASMC49169.2020.9185290","DOIUrl":null,"url":null,"abstract":"Virtual overlay metrology has been developed for a series of nine implant layers using a hybrid approach that combines physical modeling with machine learning. The prediction model is evaluated on production data. A high prediction capability is achieved and the model is able to follow variations in the implant-layer overlay and to identify outliers. We will use the prediction model to link excursions to a possible root cause. Furthermore, a KPI based on scanner metrology is defined that can be monitored continuously, and for every wafer, for detecting excursions with a similar root cause.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"101 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Virtual overlay metrology has been developed for a series of nine implant layers using a hybrid approach that combines physical modeling with machine learning. The prediction model is evaluated on production data. A high prediction capability is achieved and the model is able to follow variations in the implant-layer overlay and to identify outliers. We will use the prediction model to link excursions to a possible root cause. Furthermore, a KPI based on scanner metrology is defined that can be monitored continuously, and for every wafer, for detecting excursions with a similar root cause.
基于虚拟叠加测量的植入层偏移检测研究
虚拟覆盖计量已经开发了一系列九个植入层,使用混合方法,将物理建模与机器学习相结合。利用生产数据对预测模型进行了评价。该模型具有很高的预测能力,能够跟踪植入层叠加的变化并识别异常值。我们将使用预测模型将偏差与可能的根本原因联系起来。此外,还定义了基于扫描仪计量的KPI,可以对每个晶圆进行连续监测,以检测具有类似根本原因的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信