{"title":"Sharp estimates of approximation of classes of differentiable functions by entire functions","authors":"V. Babenko, A.Yu. Gromov","doi":"10.15421/247701","DOIUrl":null,"url":null,"abstract":"In the paper, we find the sharp estimate of the best approximation, by entire functions of exponential type not greater than $\\sigma$, for functions $f(x)$ from the class $W^r H^{\\omega}$ such that $\\lim\\limits_{x \\rightarrow -\\infty} f(x) = \\lim\\limits_{x \\rightarrow \\infty} f(x) = 0$,$$A_{\\sigma}(W^r H^{\\omega}_0)_C = \\frac{1}{\\sigma^{r+1}} \\int\\limits_0^{\\pi} \\Phi_{\\pi, r}(t)\\omega'(t/\\sigma)dt$$for $\\sigma > 0$, $r = 1, 2, 3, \\ldots$ and concave modulus of continuity.Also, we calculate the supremum$$\\sup\\limits_{\\substack{f\\in L^{(r)}\\\\f \\ne const}} \\frac{\\sigma^r A_{\\sigma}(f)_L}{\\omega (f^{(r)}, \\pi/\\sigma)_L} = \\frac{K_L}{2}$$","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"617 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/247701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In the paper, we find the sharp estimate of the best approximation, by entire functions of exponential type not greater than $\sigma$, for functions $f(x)$ from the class $W^r H^{\omega}$ such that $\lim\limits_{x \rightarrow -\infty} f(x) = \lim\limits_{x \rightarrow \infty} f(x) = 0$,$$A_{\sigma}(W^r H^{\omega}_0)_C = \frac{1}{\sigma^{r+1}} \int\limits_0^{\pi} \Phi_{\pi, r}(t)\omega'(t/\sigma)dt$$for $\sigma > 0$, $r = 1, 2, 3, \ldots$ and concave modulus of continuity.Also, we calculate the supremum$$\sup\limits_{\substack{f\in L^{(r)}\\f \ne const}} \frac{\sigma^r A_{\sigma}(f)_L}{\omega (f^{(r)}, \pi/\sigma)_L} = \frac{K_L}{2}$$