Non-Parametric Change Point Problems Using Multipliers

B. Rémillard
{"title":"Non-Parametric Change Point Problems Using Multipliers","authors":"B. Rémillard","doi":"10.2139/ssrn.2043632","DOIUrl":null,"url":null,"abstract":"Trying to perform non-parametric change point tests for multivariate data using empirical processes is much more difficult that in the univariate case, since the limiting distribution depends on the unknown joint distribution function or its associated copula. In order to solve this problem, we extend the multiplier central limit theorem to empirical processes of pseudo-observations to build asymptotically independent copies of these processes. Examples of applications to change point problems for i.i.d observations and innovations of dynamic models are given, both for the full distribution and the associated copula.","PeriodicalId":11485,"journal":{"name":"Econometrics: Applied Econometrics & Modeling eJournal","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometrics & Modeling eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2043632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Trying to perform non-parametric change point tests for multivariate data using empirical processes is much more difficult that in the univariate case, since the limiting distribution depends on the unknown joint distribution function or its associated copula. In order to solve this problem, we extend the multiplier central limit theorem to empirical processes of pseudo-observations to build asymptotically independent copies of these processes. Examples of applications to change point problems for i.i.d observations and innovations of dynamic models are given, both for the full distribution and the associated copula.
使用乘法器的非参数变点问题
尝试使用经验过程对多变量数据执行非参数变化点检验比在单变量情况下要困难得多,因为极限分布取决于未知的联合分布函数或其相关的copula。为了解决这个问题,我们将乘子中心极限定理推广到伪观测的经验过程中,以建立这些过程的渐近独立副本。文中给出了全分布和相关联结的动态模型的改进,并给出了在i.i.d观测的变点问题中的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信