Uncertainty Visualization Influences how Humans Aggregate Discrepant Information

Miriam Greis, Aditi Joshi, Ken Singer, A. Schmidt, Tonja Machulla
{"title":"Uncertainty Visualization Influences how Humans Aggregate Discrepant Information","authors":"Miriam Greis, Aditi Joshi, Ken Singer, A. Schmidt, Tonja Machulla","doi":"10.1145/3173574.3174079","DOIUrl":null,"url":null,"abstract":"The number of sensors in our surroundings that provide the same information steadily increases. Since sensing is prone to errors, sensors may disagree. For example, a GPS-based tracker on the phone and a sensor on the bike wheel may provide discrepant estimates on traveled distance. This poses a user dilemma, namely how to reconcile the conflicting information into one estimate. We investigated whether visualizing the uncertainty associated with sensor measurements improves the quality of users' inference. We tested four visualizations with increasingly detailed representation of uncertainty. Our study repeatedly presented two sensor measurements with varying degrees of inconsistency to participants who indicated their best guess of the \"true\" value. We found that uncertainty information improves users' estimates, especially if sensors differ largely in their associated variability. Improvements were larger for information-rich visualizations. Based on our findings, we provide an interactive tool to select the optimal visualization for displaying conflicting information.","PeriodicalId":20512,"journal":{"name":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","volume":"337 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3173574.3174079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The number of sensors in our surroundings that provide the same information steadily increases. Since sensing is prone to errors, sensors may disagree. For example, a GPS-based tracker on the phone and a sensor on the bike wheel may provide discrepant estimates on traveled distance. This poses a user dilemma, namely how to reconcile the conflicting information into one estimate. We investigated whether visualizing the uncertainty associated with sensor measurements improves the quality of users' inference. We tested four visualizations with increasingly detailed representation of uncertainty. Our study repeatedly presented two sensor measurements with varying degrees of inconsistency to participants who indicated their best guess of the "true" value. We found that uncertainty information improves users' estimates, especially if sensors differ largely in their associated variability. Improvements were larger for information-rich visualizations. Based on our findings, we provide an interactive tool to select the optimal visualization for displaying conflicting information.
不确定性可视化影响人类如何聚合差异信息
我们周围提供相同信息的传感器数量稳步增加。由于传感容易出错,传感器可能不同意。例如,手机上基于gps的跟踪器和自行车车轮上的传感器可能会提供不同的行进距离估计。这给用户带来了一个困境,即如何将冲突的信息调和成一个估计。我们研究了可视化与传感器测量相关的不确定性是否能提高用户推理的质量。我们测试了四种越来越详细地表示不确定性的可视化方法。我们的研究反复提出了两种不同程度的不一致的传感器测量,参与者表示他们对“真实”值的最佳猜测。我们发现,不确定性信息提高了用户的估计,特别是如果传感器在其相关变异性方面差异很大。对于信息丰富的可视化,改进更大。基于我们的发现,我们提供了一个交互式工具来选择显示冲突信息的最佳可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信