M. Thiyahuddin, A. Rahman, Emily Hazelwood, A. Sparks, M. Benfield, M. H. Mohd, C. Tan, Yusri Yusuf, M. A. A. Rahman
{"title":"Marine Life Assemblage Assessment at Oil & Gas Platform in the South China Sea Offshore Malaysia","authors":"M. Thiyahuddin, A. Rahman, Emily Hazelwood, A. Sparks, M. Benfield, M. H. Mohd, C. Tan, Yusri Yusuf, M. A. A. Rahman","doi":"10.2118/205812-ms","DOIUrl":null,"url":null,"abstract":"\n In Malaysia, numerous offshore oil and gas platforms are approaching the end of their operational lifespans and will soon be scheduled for decommissioning. Traditional decommissioning typically involves the complete removal of the platform from the seabed, consequently resulting in the destruction of the established marine life communities present on the structure. A Rigs-to-Reefs strategy provides an alternative to the complete removal of obsolete, non-productive offshore oil and gas platforms, by converting the platform into a permanent artificial reef by utilizing one of the following three methods: partial removal or topple-in-place (in-situ), or tow and place (ex-situ). In-situ reefing provides a means of conserving the marine communities found on the platform by decommissioning the platform jacket in place as an artificial reef. However, not all platforms are good candidates for a Rigs-to-Reef conversion. Thus, pre-decommissioning biological assessments should be undertaken to determine the most appropriate decommissioning strategy on a case-by-case basis. In this study, a biological assessment was developed to catalog the marine life assemblages present on two offshore oil and gas platforms in Malaysia using remotely operated vehicles. Given the limited amount of biological data available on the marine ecosystems found on Malaysia’s platforms, this data may be useful for minimizing adverse impacts of platform removal, while enhancing benefits to the marine environment.","PeriodicalId":10970,"journal":{"name":"Day 1 Tue, October 12, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 12, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205812-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In Malaysia, numerous offshore oil and gas platforms are approaching the end of their operational lifespans and will soon be scheduled for decommissioning. Traditional decommissioning typically involves the complete removal of the platform from the seabed, consequently resulting in the destruction of the established marine life communities present on the structure. A Rigs-to-Reefs strategy provides an alternative to the complete removal of obsolete, non-productive offshore oil and gas platforms, by converting the platform into a permanent artificial reef by utilizing one of the following three methods: partial removal or topple-in-place (in-situ), or tow and place (ex-situ). In-situ reefing provides a means of conserving the marine communities found on the platform by decommissioning the platform jacket in place as an artificial reef. However, not all platforms are good candidates for a Rigs-to-Reef conversion. Thus, pre-decommissioning biological assessments should be undertaken to determine the most appropriate decommissioning strategy on a case-by-case basis. In this study, a biological assessment was developed to catalog the marine life assemblages present on two offshore oil and gas platforms in Malaysia using remotely operated vehicles. Given the limited amount of biological data available on the marine ecosystems found on Malaysia’s platforms, this data may be useful for minimizing adverse impacts of platform removal, while enhancing benefits to the marine environment.