A Threshold for Log-Concavity for Probability Generating Functions and Associated Moment Inequalities

J. Keilson
{"title":"A Threshold for Log-Concavity for Probability Generating Functions and Associated Moment Inequalities","authors":"J. Keilson","doi":"10.1214/AOMS/1177692406","DOIUrl":null,"url":null,"abstract":"Let $\\{p_n\\}_0^N$ be a discrete distribution on $0 \\leqq n \\leqq N$ and let $g(u) = \\sum^\\infty_0 p_n u^n$ be its $\\operatorname{pgf}$. Then for $0 \\leqq t < \\infty g_t(u) = g(u + t)/g(1 + t) = \\sum^N_0 p_n(t)u^n$ is a family of $\\operatorname{pgf}$'s indexed by $t$. It is shown that there is a unique value $t^\\ast$ such that $\\{p_n(t)\\}_0^N$ is $\\log$-concave $(PF_2)$ for all $t \\geqq t^\\ast$ and is not $\\log$-concave for $0 < t < t^\\ast$. As a consequence one finds the infinite set of moment inequalities $\\{\\mu_{\\lbrack r\\rbrack}/\\mathbf{r}!\\}^{1/r} \\geqq \\{\\mu_{\\lbrack r+1\\rbrack}/(r + 1)!\\}^{1/r+1} \\mathbf{r} = 1,2,3,\\cdots$ etc. where $\\mu_{\\lbrack r\\rbrack}$ is the $\\mathbf{r}$th factorial moment of $\\{p_n\\}_0^N$ when the lattice distribution is $\\log$-concave. The known set of inequalities for the continuous analogue is shown to follow from the discrete inequalities.","PeriodicalId":50764,"journal":{"name":"Annals of Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1972-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/AOMS/1177692406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Let $\{p_n\}_0^N$ be a discrete distribution on $0 \leqq n \leqq N$ and let $g(u) = \sum^\infty_0 p_n u^n$ be its $\operatorname{pgf}$. Then for $0 \leqq t < \infty g_t(u) = g(u + t)/g(1 + t) = \sum^N_0 p_n(t)u^n$ is a family of $\operatorname{pgf}$'s indexed by $t$. It is shown that there is a unique value $t^\ast$ such that $\{p_n(t)\}_0^N$ is $\log$-concave $(PF_2)$ for all $t \geqq t^\ast$ and is not $\log$-concave for $0 < t < t^\ast$. As a consequence one finds the infinite set of moment inequalities $\{\mu_{\lbrack r\rbrack}/\mathbf{r}!\}^{1/r} \geqq \{\mu_{\lbrack r+1\rbrack}/(r + 1)!\}^{1/r+1} \mathbf{r} = 1,2,3,\cdots$ etc. where $\mu_{\lbrack r\rbrack}$ is the $\mathbf{r}$th factorial moment of $\{p_n\}_0^N$ when the lattice distribution is $\log$-concave. The known set of inequalities for the continuous analogue is shown to follow from the discrete inequalities.
概率生成函数的对数凹性阈值及相关矩不等式
设$\{p_n\}_0^N$是$0 \leqq n \leqq N$上的离散分布,$g(u) = \sum^\infty_0 p_n u^n$是它的$\operatorname{pgf}$。然后对于$0 \leqq t < \infty g_t(u) = g(u + t)/g(1 + t) = \sum^N_0 p_n(t)u^n$是一个由$t$索引的$\operatorname{pgf}$的家族。结果表明,存在一个唯一值$t^\ast$,使得$\{p_n(t)\}_0^N$对于所有$t \geqq t^\ast$都是$\log$ -凹$(PF_2)$,而对于$0 < t < t^\ast$则不是$\log$ -凹。作为结果,人们发现了无限的力矩不等式集$\{\mu_{\lbrack r\rbrack}/\mathbf{r}!\}^{1/r} \geqq \{\mu_{\lbrack r+1\rbrack}/(r + 1)!\}^{1/r+1} \mathbf{r} = 1,2,3,\cdots$等,其中$\mu_{\lbrack r\rbrack}$是$\{p_n\}_0^N$的$\mathbf{r}$次阶乘力矩,当晶格分布为$\log$ -凹时。连续模拟的已知不等式集是由离散不等式推导出来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信