RECA: Related Tables Enhanced Column Semantic Type Annotation Framework

Yushi Sun, Hao Xin, Lei Chen
{"title":"RECA: Related Tables Enhanced Column Semantic Type Annotation Framework","authors":"Yushi Sun, Hao Xin, Lei Chen","doi":"10.14778/3583140.3583149","DOIUrl":null,"url":null,"abstract":"Understanding the semantics of tabular data is of great importance in various downstream applications, such as schema matching, data cleaning, and data integration. Column semantic type annotation is a critical task in the semantic understanding of tabular data. Despite the fact that various approaches have been proposed, they are challenged by the difficulties of handling wide tables and incorporating complex inter-table context information. Failure to handle wide tables limits the usage of column type annotation approaches, while failure to incorporate inter-table context harms the annotation quality. Existing methods either completely ignore these problems or propose ad-hoc solutions. In this paper, we propose Related tables Enhanced Column semantic type Annotation framework (RECA), which incorporates inter-table context information by finding and aligning schema-similar and topic-relevant tables based on a novel named entity schema. The design of RECA can naturally handle wide tables and incorporate useful inter-table context information to enhance the annotation quality. We conduct extensive experiments on two web table datasets to comprehensively evaluate the performance of RECA. Our results show that RECA achieves support-weighted F1 scores of 0.853 and 0.937 with macro average F1 scores of 0.674 and 0.783 on the two datasets respectively, which outperform the state-of-the-art methods.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3583140.3583149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Understanding the semantics of tabular data is of great importance in various downstream applications, such as schema matching, data cleaning, and data integration. Column semantic type annotation is a critical task in the semantic understanding of tabular data. Despite the fact that various approaches have been proposed, they are challenged by the difficulties of handling wide tables and incorporating complex inter-table context information. Failure to handle wide tables limits the usage of column type annotation approaches, while failure to incorporate inter-table context harms the annotation quality. Existing methods either completely ignore these problems or propose ad-hoc solutions. In this paper, we propose Related tables Enhanced Column semantic type Annotation framework (RECA), which incorporates inter-table context information by finding and aligning schema-similar and topic-relevant tables based on a novel named entity schema. The design of RECA can naturally handle wide tables and incorporate useful inter-table context information to enhance the annotation quality. We conduct extensive experiments on two web table datasets to comprehensively evaluate the performance of RECA. Our results show that RECA achieves support-weighted F1 scores of 0.853 and 0.937 with macro average F1 scores of 0.674 and 0.783 on the two datasets respectively, which outperform the state-of-the-art methods.
RECA:相关表增强的列语义类型注释框架
理解表格数据的语义在各种下游应用程序中非常重要,例如模式匹配、数据清理和数据集成。列语义类型标注是表格数据语义理解中的一项关键任务。尽管已经提出了各种方法,但它们都受到处理宽表和合并复杂的表间上下文信息的困难的挑战。不能处理宽表会限制列类型注释方法的使用,而不能合并表间上下文会损害注释质量。现有的方法要么完全忽略这些问题,要么提出临时解决方案。本文提出了关联表增强型列语义类型注释框架(RECA),该框架基于一种新的命名实体模式,通过查找和对齐模式相似的表和主题相关的表来整合表间上下文信息。RECA的设计可以自然地处理宽表,并结合有用的表间上下文信息来提高注释质量。我们在两个web表数据集上进行了大量的实验,以全面评估RECA的性能。结果表明,RECA在两个数据集上的支持加权F1得分分别为0.853和0.937,宏观平均F1得分分别为0.674和0.783,优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信