More 1-cocycles for classical knots

T. Fiedler
{"title":"More 1-cocycles for classical knots","authors":"T. Fiedler","doi":"10.1142/S0218216521500322","DOIUrl":null,"url":null,"abstract":"Let $M^{reg}$ be the topological moduli space of long knots up to regular isotopy, and for any natural number $n > 1$ let $M^{reg}_n$ be the moduli space of all n-cables of framed long knots which are twisted by a string link to a knot in the solid torus $V^3$ . We upgrade the Vassiliev invariant $v_2$ of a knot to an integer valued combinatorial 1-cocycle for $M^{reg}_n$ by a very simple formula. This 1-cocycle depends on a natural number $a \\in \\mathbb{Z}\\cong H_1(V^3;\\mathbb{Z})$ with $0<a<n$ as a parameter and we obtain a polynomial-valued 1-cocycle by taking the Lagrange interpolation polynomial with respect to the parameter. We show that it induces a non-trivial pairing on $H_0(M^{reg}_n) \\times H_0(M^{reg})$ already for $n=2$.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218216521500322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Let $M^{reg}$ be the topological moduli space of long knots up to regular isotopy, and for any natural number $n > 1$ let $M^{reg}_n$ be the moduli space of all n-cables of framed long knots which are twisted by a string link to a knot in the solid torus $V^3$ . We upgrade the Vassiliev invariant $v_2$ of a knot to an integer valued combinatorial 1-cocycle for $M^{reg}_n$ by a very simple formula. This 1-cocycle depends on a natural number $a \in \mathbb{Z}\cong H_1(V^3;\mathbb{Z})$ with $0
经典结有更多的1环
设$M^{reg}$为不超过正则异构的长结的拓扑模空间,对于任意自然数$n > 1$设$M^{reg}_n$为在实体环面$V^3$上被一根弦环扭成一个结的框架长结的所有n根缆的模空间。我们用一个非常简单的公式将一个结的Vassiliev不变量$v_2$升级为$M^{reg}_n$的整数组合1-环。这个1-环依赖于一个自然数$a \in \mathbb{Z}\cong H_1(V^3;\mathbb{Z})$,以$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信