T. Deng, Takuma Sato, Zhihao Xu, R. Takabe, S. Yachi, Y. Yamashita, K. Toko, T. Suemasu
{"title":"Investigation of p-BaSi2/n-Si heterojunction solar cells on Si(001) and comparison to those on Si(111)","authors":"T. Deng, Takuma Sato, Zhihao Xu, R. Takabe, S. Yachi, Y. Yamashita, K. Toko, T. Suemasu","doi":"10.1109/PVSC.2018.8547215","DOIUrl":null,"url":null,"abstract":"We grew boron-doped p-$BaSi_{\\mathbf{2}}$ films with a hole concentration of $1.1\\times 10^{\\mathbf{18}} \\mathbf{cm} ^{\\mathbf{-3}}$ on a Si(001) substrate (resistivity ${\\rho =1}-10 W \\textbf{cm})$ by molecular beam epitaxy to form p-$BaSi_{\\mathbf{2}}/n-Si$ heterojunction solar cells. The p-BaSi$BaSi_{\\mathbf{2}}$ layer thicknesses (d) were varied from 20 to 60 nm to investigateits effect on solar cell performance. The conversion efficiency ($\\eta$ increased with (d), reached a maximum of 9.8ñ at (d) =40 nm, and degraded for larger (d), indicating that Si(001) surface shows potential for $BaSi_{\\mathbf{2}}$ solar cells. The results were compared with those on Si(111). Next, we will fabricate $BaSi_{\\mathbf{2}}$ homojunction solar cells on Si(001).","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"1 1","pages":"1788-1791"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8547215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We grew boron-doped p-$BaSi_{\mathbf{2}}$ films with a hole concentration of $1.1\times 10^{\mathbf{18}} \mathbf{cm} ^{\mathbf{-3}}$ on a Si(001) substrate (resistivity ${\rho =1}-10 W \textbf{cm})$ by molecular beam epitaxy to form p-$BaSi_{\mathbf{2}}/n-Si$ heterojunction solar cells. The p-BaSi$BaSi_{\mathbf{2}}$ layer thicknesses (d) were varied from 20 to 60 nm to investigateits effect on solar cell performance. The conversion efficiency ($\eta$ increased with (d), reached a maximum of 9.8ñ at (d) =40 nm, and degraded for larger (d), indicating that Si(001) surface shows potential for $BaSi_{\mathbf{2}}$ solar cells. The results were compared with those on Si(111). Next, we will fabricate $BaSi_{\mathbf{2}}$ homojunction solar cells on Si(001).