Philippe Candelier, Nathalie Villani, J. Schoellkopf, Patrick Mortini
{"title":"One time programmable drift antifuse cell reliability","authors":"Philippe Candelier, Nathalie Villani, J. Schoellkopf, Patrick Mortini","doi":"10.1109/RELPHY.2000.843909","DOIUrl":null,"url":null,"abstract":"An innovative non-volatile memory cell based on gate oxide breakdown is presented. The full compatibility with a standard CMOS process and the limited programming current per cell make the drift antifuse a low cost and dense non-volatile storage solution. Reliable storage is demonstrated and results from both device architecture and design optimization are given.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2000.843909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
An innovative non-volatile memory cell based on gate oxide breakdown is presented. The full compatibility with a standard CMOS process and the limited programming current per cell make the drift antifuse a low cost and dense non-volatile storage solution. Reliable storage is demonstrated and results from both device architecture and design optimization are given.