{"title":"A Survey of Open Source Statistical Software (OSSS) and Their Data Processing Functionalities","authors":"G. Niu, R. Segall, Zichen Zhao, Zhijian Wu","doi":"10.4018/IJOSSP.2021010101","DOIUrl":null,"url":null,"abstract":"This paper discusses the definitions of open source software, free software and freeware, and the concept of big data. The authors then introduce R and Python as the two most popular open source statistical software (OSSS). Additional OSSS, such as JASP, PSPP, GRETL, SOFA Statistics, Octave, KNIME, and Scilab, are also introduced in this paper with function descriptions and modeling examples. They further discuss OSSS's capability in artificial intelligence application and modeling and Popular OSSS-based machine learning libraries and systems. The paper intends to provide a reference for readers to make proper selections of open source software when statistical analysis tasks are needed. In addition, working platform and selective numerical, descriptive and analysis examples are provided for each software. Readers could have a direct and in-depth understanding of each software and its functional highlights.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"47 1","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2021010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
This paper discusses the definitions of open source software, free software and freeware, and the concept of big data. The authors then introduce R and Python as the two most popular open source statistical software (OSSS). Additional OSSS, such as JASP, PSPP, GRETL, SOFA Statistics, Octave, KNIME, and Scilab, are also introduced in this paper with function descriptions and modeling examples. They further discuss OSSS's capability in artificial intelligence application and modeling and Popular OSSS-based machine learning libraries and systems. The paper intends to provide a reference for readers to make proper selections of open source software when statistical analysis tasks are needed. In addition, working platform and selective numerical, descriptive and analysis examples are provided for each software. Readers could have a direct and in-depth understanding of each software and its functional highlights.
期刊介绍:
The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.