An architecture of F(2/sup 2N/) multiplier for elliptic curves cryptosystem

S. Sutikno, A. Surya
{"title":"An architecture of F(2/sup 2N/) multiplier for elliptic curves cryptosystem","authors":"S. Sutikno, A. Surya","doi":"10.1109/ISCAS.2000.857084","DOIUrl":null,"url":null,"abstract":"The elliptic curves cryptosystem is a public key cryptosystem which has the potential to become the dominant encryption method for information and communication systems. This cryptosystem has the same security level compared with other public key cryptosystems, in spite of the relatively short key length that is employed. A short key length makes the encryption and decryption process much faster, requires a lower bandwidth for data and provides a more efficient implementation. An implementation of the elliptic curves cryptosystem needs a high performance finite field arithmetic module. In this paper we discuss an architecture of a finite field F(2/sup 2n/) multiplier using normal basis representations. The proposed architecture offers lower computational time and lower complexity compared with other architectures.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":"115 1","pages":"279-282 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.857084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The elliptic curves cryptosystem is a public key cryptosystem which has the potential to become the dominant encryption method for information and communication systems. This cryptosystem has the same security level compared with other public key cryptosystems, in spite of the relatively short key length that is employed. A short key length makes the encryption and decryption process much faster, requires a lower bandwidth for data and provides a more efficient implementation. An implementation of the elliptic curves cryptosystem needs a high performance finite field arithmetic module. In this paper we discuss an architecture of a finite field F(2/sup 2n/) multiplier using normal basis representations. The proposed architecture offers lower computational time and lower complexity compared with other architectures.
椭圆曲线密码系统的F(2/sup 2N/)乘法器结构
椭圆曲线密码体制是一种有潜力成为信息通信系统主流加密方式的公钥密码体制。尽管使用的密钥长度相对较短,但该密码系统与其他公钥密码系统相比具有相同的安全级别。较短的密钥长度使加密和解密过程更快,对数据的带宽要求更低,并提供更有效的实现。椭圆曲线密码系统的实现需要一个高性能的有限域算法模块。本文讨论了用正基表示有限域F(2/sup 2n/)乘法器的结构。与其他体系结构相比,该体系结构具有较低的计算时间和较低的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信