Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: effects of shear-thinning and viscoelasticity

A. Syrakos, Y. Dimakopoulos, J. Tsamopoulos
{"title":"Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: effects of shear-thinning and viscoelasticity","authors":"A. Syrakos, Y. Dimakopoulos, J. Tsamopoulos","doi":"10.1063/1.5011755","DOIUrl":null,"url":null,"abstract":"The flow inside a fluid damper where a piston reciprocates sinusoidally inside an outer casing containing high-viscosity silicone oil is simulated using a Finite Volume method, at various excitation frequencies. The oil is modelled by the Carreau-Yasuda (CY) and Phan-Thien \\& Tanner (PTT) constitutive equations. Both models account for shear-thinning but only the PTT model accounts for elasticity. The CY and other generalised Newtonian models have been previously used in theoretical studies of fluid dampers, but the present study is the first to perform full two-dimensional (axisymmetric) simulations employing a viscoelastic constitutive equation. It is found that the CY and PTT predictions are similar when the excitation frequency is low, but at medium and higher frequencies the CY model fails to describe important phenomena that are predicted by the PTT model and observed in experimental studies found in the literature, such as the hysteresis of the force-displacement and force-velocity loops. Elastic effects are quantified by applying a decomposition of the damper force into elastic and viscous components, inspired from LAOS (Large Amplitude Oscillatory Shear) theory. The CY model also overestimates the damper force relative to the PTT, because it underpredicts the flow development length inside the piston-cylinder gap. It is thus concluded that (a) fluid elasticity must be accounted for and (b) theoretical approaches that rely on the assumption of one-dimensional flow in the piston-cylinder gap are of limited accuracy, even if they account for fluid viscoelasticity. The consequences of using lower-viscosity silicone oil are also briefly examined.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"13 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5011755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

The flow inside a fluid damper where a piston reciprocates sinusoidally inside an outer casing containing high-viscosity silicone oil is simulated using a Finite Volume method, at various excitation frequencies. The oil is modelled by the Carreau-Yasuda (CY) and Phan-Thien \& Tanner (PTT) constitutive equations. Both models account for shear-thinning but only the PTT model accounts for elasticity. The CY and other generalised Newtonian models have been previously used in theoretical studies of fluid dampers, but the present study is the first to perform full two-dimensional (axisymmetric) simulations employing a viscoelastic constitutive equation. It is found that the CY and PTT predictions are similar when the excitation frequency is low, but at medium and higher frequencies the CY model fails to describe important phenomena that are predicted by the PTT model and observed in experimental studies found in the literature, such as the hysteresis of the force-displacement and force-velocity loops. Elastic effects are quantified by applying a decomposition of the damper force into elastic and viscous components, inspired from LAOS (Large Amplitude Oscillatory Shear) theory. The CY model also overestimates the damper force relative to the PTT, because it underpredicts the flow development length inside the piston-cylinder gap. It is thus concluded that (a) fluid elasticity must be accounted for and (b) theoretical approaches that rely on the assumption of one-dimensional flow in the piston-cylinder gap are of limited accuracy, even if they account for fluid viscoelasticity. The consequences of using lower-viscosity silicone oil are also briefly examined.
含高粘度硅油阻尼器内流动的理论研究:剪切减薄和粘弹性的影响
采用有限体积法模拟了在不同激励频率下,活塞在含高粘度硅油的壳体内作正弦往复运动的流体阻尼器的内部流动。该油由careau - yasuda (CY)和Phan-Thien \& Tanner (PTT)本构方程建模。两种模型都考虑了剪切变薄,但只有PTT模型考虑了弹性。CY和其他广义牛顿模型以前曾用于流体阻尼器的理论研究,但目前的研究是第一次使用粘弹性本构方程进行全二维(轴对称)模拟。研究发现,在激励频率较低时,CY和PTT的预测是相似的,但在中频和高频时,CY模型无法描述PTT模型预测并在文献中发现的实验研究中观察到的重要现象,如力-位移回路和力-速度回路的滞后。弹性效应通过将阻尼力分解为弹性和粘性分量来量化,灵感来自老挝(大振幅振荡剪切)理论。CY模型也高估了相对于PTT的阻尼力,因为它低估了活塞-气缸间隙内的流动发展长度。由此得出结论:(a)流体弹性必须考虑在内;(b)依赖于活塞-气缸间隙一维流动假设的理论方法精度有限,即使它们考虑了流体粘弹性。使用低粘度硅油的后果也简要检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信