Modeling Document-level Temporal Structures for Building Temporal Dependency Graphs

Q3 Environmental Science
Prafulla Kumar Choubey, Ruihong Huang
{"title":"Modeling Document-level Temporal Structures for Building Temporal Dependency Graphs","authors":"Prafulla Kumar Choubey, Ruihong Huang","doi":"10.48550/arXiv.2210.11787","DOIUrl":null,"url":null,"abstract":"We propose to leverage news discourse profiling to model document-level temporal structures for building temporal dependency graphs. Our key observation is that the functional roles of sentences used for profiling news discourse signify different time frames relevant to a news story and can, therefore, help to recover the global temporal structure of a document. Our analyses and experiments with the widely used knowledge distillation technique show that discourse profiling effectively identifies distant inter-sentence event and (or) time expression pairs that are temporally related and otherwise difficult to locate.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"125 1","pages":"357-365"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.11787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3

Abstract

We propose to leverage news discourse profiling to model document-level temporal structures for building temporal dependency graphs. Our key observation is that the functional roles of sentences used for profiling news discourse signify different time frames relevant to a news story and can, therefore, help to recover the global temporal structure of a document. Our analyses and experiments with the widely used knowledge distillation technique show that discourse profiling effectively identifies distant inter-sentence event and (or) time expression pairs that are temporally related and otherwise difficult to locate.
为构建时间依赖图建模文档级时间结构
我们建议利用新闻话语分析来建模文档级时间结构,以构建时间依赖图。我们的主要观察是,用于分析新闻话语的句子的功能角色表示与新闻故事相关的不同时间框架,因此可以帮助恢复文档的全局时间结构。我们对广泛使用的知识蒸馏技术的分析和实验表明,话语分析可以有效地识别远距离的句子间事件和(或)时间表达对,这些事件和(或)时间表达对在时间上是相关的,否则难以定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信