Wang Lican, Rong-Yawn Chen, Y. You, Wenjun Wu, Ruofan Qiu
{"title":"A Unified Correction Method for the Acoustic Refraction (UCMAR) Caused by a Three Dimensional Shear Layer","authors":"Wang Lican, Rong-Yawn Chen, Y. You, Wenjun Wu, Ruofan Qiu","doi":"10.3813/aaa.919353","DOIUrl":null,"url":null,"abstract":"The acoustic refraction induced by the shear layer in an open-jet wind tunnel causes a source shift when estimating the source location with beamforming. Traditional correction methods of the shear layer refraction are achieved through a computational eff ort or limited using one-dimensional\n or planar shear layer. In this paper, the unified correction method for acoustic refraction (UCMAR) is suitable for the three dimensions that covers several traditional forms. Meanwhile, the UCMAR can consider more general configurations, such as the temperature gradient on both sides of the\n shear layer and the off -axis source in a circular wind tunnel. These configurations are validated through a ray tracing technique and a benchmark example. In addition, the principle of time reverse is integrated with UCMAR. This results in a reverse UCMAR, which can quickly attain an acceptable\n solution.","PeriodicalId":35085,"journal":{"name":"Acta Acustica united with Acustica","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica united with Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3813/aaa.919353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2
Abstract
The acoustic refraction induced by the shear layer in an open-jet wind tunnel causes a source shift when estimating the source location with beamforming. Traditional correction methods of the shear layer refraction are achieved through a computational eff ort or limited using one-dimensional
or planar shear layer. In this paper, the unified correction method for acoustic refraction (UCMAR) is suitable for the three dimensions that covers several traditional forms. Meanwhile, the UCMAR can consider more general configurations, such as the temperature gradient on both sides of the
shear layer and the off -axis source in a circular wind tunnel. These configurations are validated through a ray tracing technique and a benchmark example. In addition, the principle of time reverse is integrated with UCMAR. This results in a reverse UCMAR, which can quickly attain an acceptable
solution.
期刊介绍:
Cessation. Acta Acustica united with Acustica (Acta Acust united Ac), was published together with the European Acoustics Association (EAA). It was an international, peer-reviewed journal on acoustics. It published original articles on all subjects in the field of acoustics, such as
• General Linear Acoustics, • Nonlinear Acoustics, Macrosonics, • Aeroacoustics, • Atmospheric Sound, • Underwater Sound, • Ultrasonics, • Physical Acoustics, • Structural Acoustics, • Noise Control, • Active Control, • Environmental Noise, • Building Acoustics, • Room Acoustics, • Acoustic Materials and Metamaterials, • Audio Signal Processing and Transducers, • Computational and Numerical Acoustics, • Hearing, Audiology and Psychoacoustics, • Speech,
• Musical Acoustics, • Virtual Acoustics, • Auditory Quality of Systems, • Animal Bioacoustics, • History of Acoustics.